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ABSTRACT

A Denial of Service (DoS) occurs when legitimate users are prevented
from using a service over a computer network. A Distributed Denial of Service
(DDo0S) attack is a more serious form of DoS in which an attacker uses the
combined power of many hosts to flood and exhaust the networking or computing
resources of a target server. In recent years, DDoS attacks have become a major

threat to both civilian and military networks.

Multi-Protocol Label Switching with Traffic Engineering (MPLS-TE) is an
emerging technology that allows explicit, bandwidth-guaranteed packet
forwarding paths to be established for different traffic flows. It provides a means
for diverting packets of a suspected DDoS attack for analysis and cleaning

before forwarding them to the actual destination.

The objective of this research was to implement and evaluate the
performance of an MPLS-TE based solution against DDoS attacks on a realistic
test-bed network consisting of Cisco routers. The test-bed has been integrated
with Snort®, an open source Intrusion Detection System (IDS), to achieve
automatic detection and to mitigate DDoS attacks. The test-bed network was
subject to a series of malicious traffic flows with varying degrees of intensity. The
results demonstrated that MPLS-TE is very effective in mitigating such attacks.
The overall system response time and the router CPU loads are comparable to
those reported by two former NPS theses that examined alternative solutions
based on BGP blackhole routing.



THIS PAGE INTENTIONALLY LEFT BLANK

Vi



TABLE OF CONTENTS

INTRODUCGTION. ... et rrerrrs s rssa s rsaa s sa s e s aa e nn s e s a s s ana s s nnan s e nnnnsennnn 1
BACKGROUND ...t rsss s rsss s rsss s rsss s ransssenssssssssssenssssenssssanssssnns 5
A. CHAPTER OVERVIEW........cce e rsen s rsar s ssas s ssa s s sna s e n e e 5
B. DISTRIBUTED/DENIAL OF SERVICE ATTACKS ......cciieiiiieeireeeees 5
1. [ Lo Yo T N 4 - 1o €3S 6
a. UDP Flood AttacK......ccuviieiiiiiie e 6
b. ICMP FIood AttACK .....coeveiieiieiieeeee e 7
2. Amplification Attacks .......cccceeeeiiiiiiiinni s 8
a. SMUIT AtTACK ....eeiii e 8
b. Fraggle Attack ..........cccccciiiiiiiiiiiiii 9
3. Protocol Exploit Attacks ........cccccovmmmmciiiimmcccs e s 9
a. TCP SYN AEACK oeviieiiiiiieee e 10
b. Push + ACK AttacK........cooeiiiiiiiie e, 10
4, Malformed Packet Attacks .........cccccereeiieeiiimi e e eenans 10
C. MULTIPROTOCOL LABEL SWIT CHING (MPLS)-TRAFFI C
ENGINEERING (TE) ...ccooi i i s s s s s s s s e s s e s s e e e 11
1. What is MPLS ... rrer s s e se e e e 11
2. HOW MPLS WOFKS ....cccuiiiiiiiieeiireirsarsnssesssssssssnsssnsssnsssnnnsennss 12
3. Label Distribution ..o s e 17
4. What is MPLS-TE ... s resa s resa e na s e maas 18
5. HOW MPLS-TE WOTIKS .....oceeiiiiiireeirireirresssres s esnsnsenanrenannes 19
D. PREVIOUS ST UDIES OF BGP BLACKHOLE ROUTING (BGP
2] | ) SRRSO 21
1. How BGP BHR WOIKS......covuiiieiiiiiineiieeisens s rsnssessssnassenssennes 22
2. Lab Setup/Test Bed ... 24
a. Lab Setup in Stamatelatos’ Research ....................... 24
b. Lab Setup in Puri’'s Research ..........cccccvviiiiienncen, 26
3. Research ConcCluSions........c..ccviiiiimiieiieeiires e s reaeenans 27
a. Stamatelatos’ Research Conclusions..........ccceeeeue.... 27
b. Puri’s Research ConclusSions ......cccooevveeiivieciieeeennnn. 27
4. Comments on Prior BGP BHR Work......ccooeeiiiieiiieecieeeees 27
E. EXISTING MPLS-TE TECHNIQUES FOR DDOS MITIGATION........ 29
1. MPLS-based Traffic Shunt..........ccccoveeiiiimciiiecirrecr e 29
2. Sinkhole Routing with BGP Group Attributes..................... 33
3. Comments on Prior MPLS-TE WoOrK.......ccccceimmeiireenirennnnens 36
SETUP OF TEST-BED ......ccceiiieiiiiiiiieeiiiesiirsas s sssssssns s ssnssenssssanssssenssssens 39
A. CHAPTER OVERVIEW........coe e resrrssa s sssa s s sn s ennn s enan e 39
B. NETWORK’S CONFIGURATION .....cooeiiiieiiiseiieneirenasrssnsesnssennnnns 39
1. 7= 3 1= - | 39
2. Hardware ........coieiieiieiiici i rseirsen s rea s sen s rns s reansen s sn s snnnsannns 39
3. £ Y o] 1117 1= 40



4. Topology and MPLS Tunnels............ccoeiiiiimiireeeecccceeeeeeeeeeens 41

5. Router Configuration (Edge, Core) ........ccccoiriiininnnininiinciinnns 44

a. Installing LER ROULEr........cccoiiiiiiiiiiii e 44

b. Installing LSR ROULET ........uviiiiiiiiiiiiiiiiiieieeeee 49

6. K= o (= Y 51

7. Traffic Generator...........cccoviiiiiiirii s 51

C. AUTOMATIC INTRUSION DETECTION SYSTEM..........cccceeeeiinnnee 54

1. (1D ISR (57,0 3 4 K Q) IS T=] U] o T 54

a. Before Snort®’s Installation..........ccccceeeeiiiiiiiiiiiiiinnns 54

b. Installing MySQL and Snort®...............eevvvvvivieeneennnee. 55

C. Installing Snort®’s Graphic Interface...........cccc........ 58

2. Automation of Attack Response .......ccccveeeccciiiiiiinnnecennnnnnn, 60

3. Install SnortSam ... 60

4, Modifying the Plug-in’s Source Code ..........ccooeiiiiiiiiiiiiinnne 64

IV. TESTING—RESULTS—ANALYSIS........cooeiieeemrermmrerrrrnrreseseesssssssssssssnssnsnne 67
A. CHAPTER OVERVIEW..........ooieeeeeeeeeeeeersseseessssssssssssssssss s s sssssssssssnnes 67

B. TESING ... s 67

C. PERFORMANCE METRICS ... s s e 84

D. EXPERIMENTAL RESULTS AND ANALYSIS........cccciiiiiiiiireieneen 86

E. COMPARISON BETWEEN MPLS-TE AND BGP BHR..................... 92

Vv CONCLUSIONS.......ceeeeeennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 97
A. CONCLUSIONS .......cooiieeeeeeeeeeereseseesessssssssss s s s s s sss s s s s s s s s s s snsssnnssnnssnnnnnnns 97

B. FUTURE WORK ... 98
APPENDIX A. ROUTERS’ CONFIGURATION FILES ........iiiiiieeeeeeeeeeeeeeeeeeeeen 99
APPENDIX B. SSP_CISCO_NULLROUTE.C FILE ........ccoooiiiiiiiriiiieeiereeseeseenneen 107
LIST OF REFERENCES...........ccoooiiiiiieeieesesseeessssssessssssssssssss s s ssssssssssssssssssnsssnsnnnnnnn 115
INITIAL DISTRIBUTION LIST ....cooeiiiieeeieeeeeeeeerensesseessssssssssssssssssssssssssssssssssssssssnnnns 119

viii



Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.

Figure 12.
Figure 13.

Figure 14.

Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

Figure 24.
Figure 25.
Figure 26.

Figure 27.
Figure 28.
Figure 29.

Figure 30.
Figure 31.
Figure 32.
Figure 33.

Figure 34.

LIST OF FIGURES

Architecture of a DDoS Attack (From: [6]) ....cooeeevveeeeviviiiiiiieeeeeeeeeiiiinnn, 6
An example of a Smurf attack (After: [2]).....coevveriiiiiiiiiii i, 9
Shim headers are used for most non-ATM networks (From: [14])...... 13
Basics about MPLS (From: [15]) ....cooviiiiiiiiiiieeee e 14
A MPLS network example: Exchange routing information (From:

(L 7)) oo 16
A MPLS network example: Assigning Labels (From: [17]).................. 16
A MPLS network example: Forwarding packets (From: [17]) ............. 17
Stamatelatos’ topology for test-bed #3 (From: [2]) .cccooeeeevvvvvveiiiiinnnn. 25
Puri’s test-bed (From: [3]) e 26

DDoS mitigation with the Sinkhole router technique (After: [21])........ 30
DDoS mitigation with the MPLS-based traffic shunt technique

N =T oo 220 1 ) 32
Attack to service A. (From: [23]) ..coooeeiiiiiiiiiii e 34
Lead all traffic to server A to the sinkhole router to make traffic of

other servers normal. (From: [23]) ......cooviieiiiiiiiiiii e 35
R3 releases a route again and the route of R2 at the non-attack

entrance becomes normal.(From: [23]) .....cooviiiiiiiiiiiie 36
N 0T T Q8 (] o L] [0 o 2P 42
SmartWindow screen for device selection..........ccccooveveiiiiiiiiiiiinnnnenn, 52
SmartWindow main screen for SmartBits 6000C device .................... 53
BASE SNAPSN0OO0L ... 59
Successful activation of custom rule............ceevvvviviiviiiiiiiiiiiiiiiiiiieeeee, 63
Test-bed before the attack.............uuiiiiiiiiiiii e, 68
Initiation of attack captured by target host’s Wireshark application .... 73
Telnet commands used to add the static route to LER1..................... 74
Snapshot of Wireshark capture window showing the system’s first

(TS 010 ST PP 75
Telnet commands used to add the redirection route to LERZ2............. 76
Telnet commands used to add the redirection route to LER3............. 77
Snapshot of Wireshark capture window showing the attack’s

L€=1 00011 0 F= U1 o o 1A UUPPPPPPPN 78
Snapshot from Wireshark running on the cleaning center host. ......... 79
Router logs from LSR reporting unstable behaviors........................... 83
Snapshot from target’s Wireshark after the selective unblocking on

FOULEr LERZ ... 84
LER1 CPU load for attack flow 8.36 MbPS ........cccvvvvvviiiiiiiieeeeeeeeeeiins 85
Mean mitigation time for different attack flows..............cccoooeiiiiiiiiiinins 86
Mean time for IDS’s first response for different attack flows............... 87
Traffic gaps at cleaning center host created by LSR1 failure due to

NeaVy traffiC .........coiie e 89
CPU load of LER1 (cleaning CeNter)........ccoouueeeeieieiiiiiiiiiee e 90

iX



Figure 35.
Figure 36.
Figure 37.
Figure 38.

CPU load of LER2 (border router) ...........eceeeieeeeeeieeeiiceee e e ee e 91
CPU load of LER3 (border router) ............ceeeeeeeiiiieiiiiiiieee e 91
CPU load of LSR1 (COre rOULEN) ...ccovvveiiiiiiiee e et e e 92
Comparison of MPLS-TE and BGP BHR techniques ..........ccccccccenn.... 94



Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.

LIST OF TABLES

Preconfigured MPLS-TE tUNNEIS .......coovvviiiiiii e 43
MPLS-TE Configuration of LER Router — LER2 ...........ccccooeviiiiiiiiinnnes 46
MPLS-TE Configuration of LSR Router — LSR1 ..........ccccoevveieeevvennnnes 51
LER1’s Forwarding Table Before the Attack...........ccccccceeiiiiiiiiiiiiinnnns 69
LER2’s Forwarding Table Before the Attack..........cccccccceeeieiiiiiiinennnne, 70
LERS’s Forwarding Table Before the Attack...........ccccccceeiiiiiiiiiiiiinnins 71
ALACK FIOWS ... 72
LER1’s Forwarding Table after the mitigation of the attack ................ 80
LER2’s Forwarding Table after the mitigation of the attack ................ 81
LERS3’s Forwarding Table after the mitigation of the attack ................ 82
Summary of timing data for different attack flows. ..........ccccccevvvvnnnnnnnn. 87

Xi



THIS PAGE INTENTIONALLY LEFT BLANK

Xii



ACKNOWLEDGMENTS

First, | thank the Hellenic Navy for providing the opportunity to pursue my
studies at the Naval Postgraduate School. It was a dream for me since many
years back.

| would like to thank my thesis advisor professor Geoffrey Xie for the
opportunity he gave me to work on such an interesting and challenging thesis
topic. He provided me very generously all the required knowledge and means to
achieve my goal.

| would also like to thank all the rest of the Academic Staff of the Naval
Postgraduate School and especially the Department of Computer Science for the
gualitative knowledge that they accorded me with a high sense of responsibility.

Special thanks to my thesis editor, Mrs. Barbara Young. She helped me to
improve my writing and her advices made my work easier.

Last and more important, | would like to thank my family, my wife,
Natassa, and my two daughters, Andriana and Stella. Without their unconditional

and absolute support, my goals would have never been succeeded.

Xiii



THIS PAGE INTENTIONALLY LEFT BLANK

Xiv



. INTRODUCTION

Denial of Service (DoS) is a common type of cyberattack over the Internet.
The purpose of DoS is to make a computer's resources unavailable to its
intended users. One way to launch a DoS attack is by sending malformed traffic
to the target or by sending a huge amount of normal traffic which will overload
the target’s buffer. To be more effective, attackers often use many compromised
machines, rather than just one, as a source for the attack. In such a case, the
malicious packets approach the victim from different locations. This special type
of DoS, called Distributed Denial of Service (DDoS), is one of the most difficult

problems affecting normal operations on the Internet.

The first well-documented DDoS attack occurred in August 1999, when a
DDoS tool called Trinoo was deployed and activated in at least 227 hosts,
flooding a single University of Minnesota computer. That computer was down for

more than two days as a result [1].

The biggest DDoS attack in terms of duration, number of victims, and
caused damage started on February 7, 2000. Yahoo! was one of the first victims
and the Internet portal was inaccessible by users for three hours. Analysts
estimated that due to this attack Yahoo suffered a loss of e-commerce and
advertising revenue amounting to about $500,000. On the same day, CNN,
eBay, Amazon and Buy.com, were all victims of DDoS attacks, causing them to
either stop functioning completely or slowing their response times down
significantly. According to book seller Amazon.com, the attacks resulted in a loss
of $600,000 during the 10 hours its Web site was down. Buy.com went from
100% availability to 9.4%, while CNN.com's users went down to below 5% of
normal volume. And, on February 9, E*Trade and ZDNet both suffered DDoS
attacks. E*Trade was virtually unreachable. One can only assume that to a
company that does $2 billion dollars weekly in online trades, the downtime loss

was huge.



Such DDoS attacks are a major concern to the military. A continuous flow
of information is critical to modern military operations. Additionally, military
networks are increasingly based on the same technologies used by the public
Internet, making them susceptible to the same wide range of DDoS threats.

Several techniques exist to protect a network’s hosts against a DDoS
attack by filtering out malicious packets. One of the most common is the “Border

Gateway Protocol (BGP) Blackhole Routing.”

Blackhole routing (BHR) is a clever way of implementing the policy “route
this packet to the trash.” The concept is quite simple and leverages the basic
operation of routers. A blackhole route tells the router to send the suspected
packets to the nullO interface (a non-existent interface), which is equivalent to

telling the router to “route this packet to the trash.”

In prior efforts, two former NPS students [2] [3] built test-beds to
investigate how to mitigate DDoS with BGP blackhole routes. In the first one
(Stamatelatos’ Master’s thesis), the author evaluated the performance of BHR
methods in the lab with three real-time test-bed networks which were manually

triggered by the administrator.

The second one (Puri's Master's thesis) used the results from
Stamatelatos’ study in combination with a proper IDS system and the result was
a working implementation of a fully automated attack-detect react-protect BHR

system.

The problem with BHR is that it protects only the network, not the victim. It
directs all the traffic - good or bad - to the “trash” and the target cannot receive
any traffic during the attack. So, good traffic is also sent to the “trash” and thus,

the DDoS has still achieved its purpose of DoS’ing the target machine.

This thesis will evaluate another more recently developed technique for
DDoS mitigation. It is based on MultiProtocol Label Switching — Traffic
Engineering (MPLS -TE).



The MPLS is a connection-oriented forwarding mechanism in which
packets are forwarded based on labels. It was introduced in 2001 in an attempt
to create a faster forwarding mechanism to combine the advantages of the
already existing Internet Protocol (IP) and the Asynchronous Transfer Mode
(ATM).

Traffic engineering refers to a mode of network operation whereby routes
are selected specifically to meet the delay and throughput requirements of
individual user traffic flows. The MPLS’s support for explicit routing allows
network engineers to adjust the routing of flows to balance the use of a network’s
resources and implement traffic engineering solutions. So, MPLS traffic
engineering (MPLS-TE) provides a way to achieve traffic engineering benefits
without needing to run a separate network and without needing a non-scalable

full mesh of router interconnects.

With MPLS-TE, when an attack is occurring, all traffic destined to the
victim can be redirected; not sent to the “trash”, but rather to a Cleaning Center
connected on one of the Label Edge Routers (LERS), as border routers are
called in MPLS terminology. In this Cleaning Center the traffic will be analyzed
and “cleaned”; i.e., malicious traffic is sent to the “trash” and the good traffic is

redirected back to its original destination—the attack’s target.

The research questions that will be answered by the research for this

thesis are the following:

1. What is MultiProtocol Label Switching (MPLS)? What are the goals
of MPLS?

2. How is Traffic Engineering implemented with MPLS?

3. What are common types of DDoS attacks that can be mitigated by
the MPLS-TE techniques?

4. What is the difference between the MPLS-TE technique and the BGP
Blackholing?



5. What is the speed of reaction of the proposed MPLS-TE technique

to a new DDoS attack?

The rest of the thesis is organized as follows. Chapter Il presents a more
detailed explanation of DDoS attacks, MPLS-TE, previous studies of DDoS
mitigation with BGP Blackhole routing (BHR), methods, and the already existing
techniques for DDoS mitigation with MPLS-TE. Chapter Ill describes the
methodology and the test-bed network configuration used in this research.
Chapter IV presents the results and analysis of this research and a comparison
between MPLS-TE and BGP BHR methods. Chapter V provides conclusions and

suggestions for future work.



Il. BACKGROUND

A. CHAPTER OVERVIEW

This chapter provides background information for this study. The first
section describes the basic attributes of Distributed Denial of Service (DDoS)
attacks and the most common techniques that attackers use. The second section
presents the principles of MultiProtocol Label Switching — Traffic Engineering
(MPLS-TE) forwarding technique. The third section presents the results from
previous studies related to Boarder Gateway Protocol (BGP) Blackhole routing
for DDoS attack’s mitigation The fourth section describes the existing methods of
implementation that have been proposed to protect a network from DDoS attacks
with the MPS-TE technique.

B. DISTRIBUTED/DE  NIAL OF SERVICE ATTACKS

A Denial of Service (DoS) attack can be characterized as an attack on a
server or a network with the purpose of preventing legitimate users from using
that server or network. A Distributed Denial of Service (DDoS) attack is a large-
scale coordinated DoS attack on the availability of services of a server or
network, launched indirectly, through many compromised computers on the
Internet. The services under attack are those of the “primary victim,” while the
compromised systems used to launch the attack are often called “Zombies” or
“secondary victims.” The use of secondary victims in performing a DDoS attack
provides the attacker with the ability to perform a much larger and more
disruptive attack, while making it more difficult to track down the original attacker.
As defined by the World Wide Web Security FAQ:

A Distributed Denial of Service (DDoS) attack uses many

computers to launch a coordinated DoS attack against one or more
targets. Using client/server technology, the perpetrator is able to

5



multiply the effectiveness of the Denial of Service significantly by
harnessing the resources of multiple unwitting accomplice

computers which serve as attack platforms [4].

There are many kinds of DDoS attacks. In general we can divide them into
four main classes based on how they are engineered: Flood Attacks,

Amplifications Attacks, Protocol Exploit Attacks and Malformed Packets Attacks

[5].

’_'_,_:—'—'_'_ ——
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— -

e ———
—— —
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| Handler | Handler |
- — o —
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)\

D

Figure 1.  Architecture of a DDoS Attack (From: [6])

1. Flood Attacks

In Flood Attacks, the attacker uses the Zombies to send large amounts of
traffic to the victim’'s system, in order to congest the victim system’s network
bandwidth with IP traffic. The system under attack slows down, crashes, or
suffers, or denies access to legitimate users. Flood attacks can be launched
using both User Datagram Protocol (UDP) and Internet Control Message
Protocol (ICMP) packets.[5]

a. UDP Flood Attack

In a UDP Flood attack, the attacker sends a large number of UDP

packets through the Zombies to either random or specified ports on the victim’'s

6



system. Often, the attacking DDoS tool will also spoof the source IP address of
the attacking packets. This helps hide the identity of the secondary victims since
return packets from the victim’s system are not sent back to the Zombies, but to

the spoofed addresses.

The victim’s system tries to process the incoming data to determine
which applications have requested data. If the victim’s system is not running any
applications on the targeted port, it will send out an ICMP packet to the sending

system indicating a “destination port unreachable” message.

Thus, for a large number of UDP packets, the victimized system will
be forced into sending many ICMP packets, eventually leading it to be
unreachable by other clients. A UDP flood attack may also fill the bandwidth of
connections located around the victim's system. This often impacts systems

located near the victim.[5]
b. ICMP Flood Attack

In ICMP flood attacks, the attacker sends a large number of
ICMP_ECHO packets (“ping”) to the victim’s system through the Zombies. These
packets cause the victim’'s system to reply. The combination of inbound and
outbound traffic saturates the bandwidth of the victim’'s network connection [5].
Often, the attacking DDoS tool will also spoof the source IP address of the
attacking packets. This helps hide the identity of the secondary victims since
return packets from the victim system are not sent back to the Zombies, but to

the spoofed addresses [5].

Due to its simplicity this kind of attack is the chosen attack to be
contacted during this thesis’ testing. One more reason making this kind of attack
desirable for examination is that it has been used in previous studies with BGP
BHR techniques. Since this thesis is going to compare this current technique’s
performance with the earlier technique, it is very important for both techniques to

at least be contacted under the same kind of DDoS attack.



2. Amplification Attacks

In amplification attacks the attacker spoofs the target’s IP address and he
or the Zombies send messages to a broadcast IP address, trying to cause all
systems in the subnet reached by the broadcast address to send a reply to the
victim’'s system. Most routers have the broadcast IP address feature. When a
sending system specifies a broadcast IP address as the destination address, the
routers replicate the packet and send it to all the IP addresses within the
broadcast address range. That is where the attack’'s name comes from. The
broadcast IP address is used to amplify and reflect the attack traffic, and thus

reduce the victim system’s bandwidth [5].

The attacker can send the broadcast message directly, or use the
Zombies to send the broadcast message to increase the volume of attacking
traffic. If the attacker decides to send the broadcast message directly, this attack
provides the attacker with the ability to use the systems within the broadcast
network as Zombies without needing to gain access to them or to install any

agent software [5].

a. Smurf Attack

The Smurf attack is named after the source code employed to
launch the attack (smurf.c) [7]. A Smurf attack uses ICMP_ECHO_REQUEST
packets with a spoofed source address of the victim. The destination of those
packets is an IP network broadcast address. When the systems on the network
(amplifiers) where the broadcast address, the ECHO_REQUEST is sent receive
the packet with the falsified source address (i.e., the return address), they
respond, flooding the targeted victim with the echo replies. The amplifier sends
the ICMP ECHO REQUEST packets to all of the systems within the broadcast
address range, and each of these systems will return an ICMP ECHO REPLY to
the target victim’'s IP address. This flood can overwhelm the targeted victim’s

network. Both the intermediate and victim’s networks will see degraded



performance. The attack can eventually result in the inoperability of both
networks. This type of attack amplifies the original packet tens or hundreds of

times.
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Figure 2.  An example of a Smurf attack (After: [2])

b. Fraggle Attack

Another example of amplification attacks is a DDoS Fraggle attack,
where the attacker sends packets to a network amplifier, using UDP ECHO
packets instead of ICMP ECHO packets used in Smurf attacks. The result is

almost the same as with the Smurf attacks [5].
3. Protocol Exploit Attacks

This category of DDoS attacks is based upon IP protocol’s vulnerabilities.
Two examples are given below. The first one is about misuse of the TCP SYN
(Transfer Control Protocol Synchronize) protocol, and the second one about the
misuse of the PUSH+ACK protocol [5].



a. TCP SYN Attack

The TCP SYN attack exploits the three-way handshake between
the sender and the receiver by sending a large amount of TCP SYN packets to
the victim’'s system with spoofed source IP addresses, so the victim system
responds with a SYN+ACK packet to each of them. When the received
malformed SYN requests are being processed by a server and none of the ACK
responses are returned, the server eventually runs out of processor and memory
resources, and becomes unable to respond to legitimate users. Basically, SYN
flooding disables a targeted system by creating many half-open connections.
Each operating system has a limit to the number of connections it can accept. In
addition, the SYN flood may exhaust system memory, resulting in a system
crash. In a DDoS TCP SYN attack, the attacker uses Zombies to send large
amount of bogus TCP SYN requests to the victim’s server in order to reserve the
server’s processor resources, and hence prevent the server from responding to

legitimate requests.
b. Push + Ack Attack

The PUSH + ACK attack is similar to a TCP SYN attack regarding
its purpose that is to reduce the resources of the victim’s system. In a PUSH +
ACK attack, the attacker, through the Zombies, sends TCP packets with the
PUSH and ACK flags (bits) set to one. These flags in the TCP header instruct the
victim system to empty all data in the TCP buffer (regardless what the buffer
contains) and send an acknowledgement when complete. If this sequence is
repeated with multiple Zombies, the receiver cannot process the large amount of

incoming packets and the victim’s system will run out of resources [8].
4, Malformed Packet Attacks

As S. M. Specht and R. B. Lee stated in their paper:
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A malformed packet attack is an attack where the attacker instructs
the zombies to send incorrectly formed IP packets to the victim
system in order to crash it.

There are a variety of malformed packet attacks. The most known [9] are:

Land Attack, Latierra Attack, Ping of Death Attack, Jolt2 Attack, Rose
Attack, Teardrop, Newtear, Bonk, Syndrop Attack, and Winnuke Attack.

C. MULTIPROTOCOL LABEL SWITCHING (MPLS) - TRAFFI C
ENGINEERING (TE)

1. What is MPLS

In accordance with IEC's site:

Multiprotocol label switching (MPLS) is a versatile solution to
address the problems faced by present-day networks — speed,
scalability, quality-of-service (Qo0S) management, and traffic
engineering. MPLS has emerged as an elegant solution to meet the
bandwidth-management and service requirements for next-
generation Internet protocol (IP)-based backbone networks. MPLS
addresses issues related to scalability and routing (based on QoS
and service quality metrics) and can exist over existing
asynchronous transfer mode (ATM) and frame-relay networks [10].

With an IP forwarding mechanism, packets are sent from a source to a
destination in a hop-by-hop manner. Intermediate routers examine each packet’s
header and perform a route table lookup to determine the next hop (i.e., router)
toward the destination. This may consume a network’s resources because of the
increased CPU requirements to process each packet’s header. Although modern
routers use hardware and software switching techniques to manage the headers’
examination process by creating high-speed cache entries, these methods rely

upon the Layer 3 routing protocol to establish the path to the destination.

The problem with this approach is that routing protocols have little
knowledge about Layer’'s 2 characteristics, such as loading and quality of service
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(QoS). Continuously increased demand for higher quantity and better quality of

traffic puts demanding pressure on the Internet's backbone.

To meet these new demands, multiprotocol label switching (MPLS)
abandoned the hop-by-hop technique by enabling devices to specify paths in the
network based upon QoS and bandwidth needs of the applications. In other
words, route selection can now take into account Layer 2's attributes. Before
MPLS, vendors implemented other techniques for switching frames with values
other than the Layer 3 header.

In 2001, based on Cisco's tag-switching protocol, the IETF defined MPLS
as a vendor-independent protocol. Although the two protocols have much in
common, differences between them prevent tag-switching devices from
interacting directly with MPLS devices. MPLS has now superseded tag switching
[11].

2. How MPLS Works

In accordance with Cisco’s Principal Consultant, Cisco Systems-India &
SAARC, Chandan Mendiratta

MPLS is a scheme typically used to enhance an IP network.
Routers on the incoming edge of the MPLS network add an 'MPLS
label' to the top of each packet. This label is based on some criteria
(e.g. destination IP address) and is then used to steer it through the
subsequent routers. The routers on the outgoing edge strip it off
before final delivery of the original packet. MPLS can be used for
various benefits such as multiple types of traffic coexisting on the
same network, ease of traffic management, faster restoration after
a failure, and, potentially, higher performance. [12]

So, the main idea is to add a small label (sometimes called a “tag”) on the
front of a packet and route the packet based on the label, instead of the IP
address. The MPLS operates at an OSI| Model layer that lies between traditional
definitions of Layer 2 (Data Link Layer) and Layer 3 (Network Layer), and
therefore is often called the “Layer 2.5” protocol [13]. It provides data-carrying

service for both circuit-based clients and packet-switching clients which provide a
12



datagram service model. It can be used to carry many different kinds of traffic,

including IP packets, as well as ATM and Ethernet frames.

In order to further understand how this protocol works, it is critical for the

reader to be familiar with the following definitions:

» Label—A header created by an edge label switch router (edge LSR) and
used by label switch routers (LSR) to forward packets. The header format varies
based upon the network media type. For example, in an ATM network, the label
is placed in the VPI/VCI fields of each ATM cell header. In a LAN environment,
the header is a “shim” located between the Layer 2 and Layer 3 headers. This

thesis research is concerned only with IP packets and labels

Ethernet| MPLS IP TCP App |Ethernet

header | header | header | header | data trailer
/ —
/ T

/

/ 20 bits 3 1 8-
Label QoS|S TFL—‘

Label : Label value (0 to 15 are reserved for special use)
QoS : Quality of Service

S : Bottom of Stack (set to 1 for the last entry in the label)
TTL :Time To Live

Figure 3. Shim headers are used for most non-ATM networks (From: [14])

» Label Switch Router (LSR)—A device such as a switch or a router that

forwards labeled entities based upon the label’s value.

» Label Edge Router (LER) —Resides at the edge of an MPLS network

and assigns and removes the labels from the packets.

» Label Switched—When an LSR makes a forwarding decision based

upon the presence of a label in the frame/cell.

» Label-Switched Path (LSP) —The path defined by the labels through

LSRs between end points.
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* Forward Equivalence Class (FEC) — A representation of a group of
packets that share the same requirements for their transport. The assignment of
a particular packet to a particular FEC is done just once (when the packet enters
the network).

LSP

LER LSR LSR LER

IP#1 L=5 " 1P#1 L=9 |}

g =

-

IP Addr | Out Label In Label | Out Label In Label | Out Label In Label | Next Hop

192.4/16 ] ] 9 9 2 2 192.4/16
Layer2 QA= > = Remove QRENg4
Transport (R AET ERELSHapping EabelSwapping T Transport

“‘ROUTE AT EDGE, SWITCH IN CORE”

Figure 4. Basics about MPLS (From: [15])

As stated on Juniper’s corresponding page “How MPLS Works” [16]:

MPLS is not a routing protocol; it works with layer 3 routing
protocols (BGP, IS-IS, OSPF) to integrate network layer routing
with label switching. An MPLS FEC consists of a set of packets that
are all forwarded in the same manner by a given label-switching
router (LSR). For example, all packets received on a particular
interface might be assigned to a FEC. MPLS assigns each packet
to a FEC only at the LSR that serves as the ingress node to the
MPLS domain. A label distribution protocol binds a label to the
FEC. Each LSR uses the label distribution protocol to signal its
forwarding peers and distribute its labels to establish an LSP. The
label distribution protocol enables negotiation with the downstream
LSRs to determine what labels are used on the LSP and how they
are employed.
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Labels represent the FEC along the LSP from the ingress node to
the egress node. The label is prepended to the packet when the
packet is forwarded to the next hop. Each label is valid only
between a pair of LSRs. A downstream LSR reached by a packet
uses the label as an index into a table that contains both the next
hop and a different label to prepend to the packet before
forwarding.

The above section closes as follows [16]:

The LSR that serves as the egress MPLS node uses the label as
an index into a table that has the information necessary to forward
the packet from the MPLS domain. The forwarding actions at the
egress LSR can be any of the following:

Forward the packet based on the inner header exposed after
popping the label. This can be accomplished either by doing a
routing table lookup or forwarding based on the exposed inner
MPLS label.

Forward the packet to a particular neighbor as directed by the table
entry, for example in a Martini layer 2 transport case.

Each LSR, also known as an MPLS node, must support the following [16].
e Atleast one Layer 3 routing protocol (1S-1S, OSPF or BGP)
e A label distribution protocol (LDP, BGP, or RSVP-TE)
e The ability to forward packets based on their labels

An LSP with MPLS can be defined either by hop-by-hop routing (where
each LSR independently selects the next hop for a given FEC), or by explicit
routing (similar to source routing — the ingress LSR specifies the list of nodes
through which the packet traverses (Traffic Engineering). The LSP setup for an
FEC is unidirectional. The return traffic must use another LSP (may be the same
if defined so) [16].

When an MPLS network has been set up, the routing protocol (OSPF,
BGP or IS-IS) is used to specify how routers can communicate with each other
with the routing update messages.
15
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Figure 5. A MPLS network example: Exchange routing information (From: [17])

Sequentially, the selected label distribution protocol (LDP, BGP or RSVP-

TE) is used to assign the corresponding labels.

%*_ES

Protocol (LDP)

(Downstream £

Figure 6. A MPLS network example: Assigning Labels (From: [17])

After the label assignment, the MPLS network is ready to forward packets
as already described.
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Figure 7. A MPLS network example: Forwarding packets (From: [17])

3. Label Distribution

There are three methods for label distribution. The first one is the Label
Distribution Protocol (LDP). This LDP is used between nodes in an MPLS
network to establish and maintain the label bindings. In order for MPLS to
operate correctly, label distribution information needs to be transmitted reliably,
and the label distribution protocol messages pertaining to a particular FEC need
to be transmitted in sequence. Flow control is also desirable, as is the capability

to carry multiple label messages in a single datagram.

As described on protocols.com “MPLS” web page [18], the LSR uses LDP

in order

...to establish label switched paths through a network by mapping
network layer routing information directly to data-link layer switched
paths. These LSPs may have an endpoint at a directly attached
neighbor (like IP hop-by-hop forwarding), or may have an endpoint
at a network egress node, enabling switching via all intermediary
nodes. A FEC (Forwarding Equivalence Class) is associated with
each LSP created. This FEC specifies which packets are mapped
to that LSP.
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The second method is with RSVP, which is used in MPLS traffic
engineering. This method employs additions to the RSVP signaling protocol. It
leverages the admission control mechanism of RSVP. Label requests are sent in
PATH messages and binding is done with RESV messages. An EXPLICIT-
ROUTE object defines the path over which setup messages should be routed.

Using RSVP has several advantages [17].

The advantages of using RSVP with MPLS and how it works are very well

described in protocols.com web page [18] as follows:

The RSVP protocol defines a session as a data flow with a
particular destination and transport-layer protocol. However, when
RSVP and MPLS are combined, a flow or session can be defined
with greater flexibility and generality. The ingress node of an LSP
(Label Switched Path) uses a number of methods to determine
which packets are assigned a particular label. Once a label is
assigned to a set of packets, the label effectively defines the flow
through the LSP. We refer to such an LSP as an LSP tunnel
because the traffic through it is opaque to intermediate nodes along
the label switched path.

The last method for label distribution is the BGP-Based Label Distribution,
which is used in the context of MPLS VPNSs. Since VPNs have nothing to do with
this research effort this last method is not addressed further in this thesis.

4. What is MPLS-TE

In accordance with Wikipedia, Teletraffic or Traffic Engineering is:

...the  application of traffic  engineering theory to
telecommunications. Teletraffic engineers use their basic
knowledge of statistics including Queueing theory, the nature of
traffic, their practical models, their measurements and simulations
to make predictions and to plan telecommunication networks at
minimum total cost. These tools and basic knowledge help provide
reliable service at lower cost. [19]
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The MPLS-TE software allows an MPLS backbone to simulate and
expand upon the traffic engineering capabilities of Layer 2 Frame Relay networks
and ATM [20].

As is referred to on Cisco’'s MPLS-TE web page [20]:

Traffic engineering is essential for service provider and Internet
service provider (ISP) backbones. Such backbones must support a
high use of transmission capacity, and the networks must be very
resilient, so that they can withstand link or node failures.

MPLS traffic engineering provides an integrated approach to traffic
engineering. With MPLS, traffic engineering capabilities are
integrated into Layer 3, which optimizes the routing of IP traffic,
given the constraints imposed by backbone capacity and topology.

MPLS traffic engineering routes traffic flows across a network
based on the resources the traffic flow requires and the resources
available in the network.

MPLS traffic engineering employs "constraint-based routing,” in
which the path for a traffic flow is the shortest path that meets the
resource requirements (constraints) of the traffic flow. In MPLS
traffic engineering, the flow has bandwidth requirements, media
requirements, a priority versus other flows, and so on.

MPLS traffic engineering gracefully recovers to link or node failures
that change the topology of the backbone by adapting to the new
set of constraints.

5. How MPLS-TE Works

As has already been discussed, MPLS can be considered an integration
of Layer 2 and Layer 3 technologies. The MPLS enables traffic engineering by
making traditional Layer 2 features available (or “visible”) to Layer 3. Thus,
vendors can provide in a one-tier network that traditional techniques could only

achieve by overlaying a Layer 3 network on a Layer 2 network [20].
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As stated on Cisco’s corresponding web page [20]:

MPLS traffic engineering automatically establishes and maintains
the tunnel across the backbone, using RSVP. The path used by a
given tunnel at any point in time is determined based on the tunnel
resource requirements and network resources, such as bandwidth.
Available resources are flooded via extensions to a link-state based
Interior Protocol Gateway (IPG). Tunnel paths are calculated at the
tunnel head based on a fit between required and available
resources (constraint-based routing). The IGP automatically routes
the traffic into these tunnels. Typically, a packet crossing the MPLS
traffic engineering backbone travels on a single tunnel that
connects the ingress point to the egress point.

A tunnel is a path that can either be:
e explicitly configured hop-by-hop,

e dynamically routed by the Constrained Shortest Path First (CSPF)

algorithm, or

e configured as a loose route that avoids a particular IP or that is

partly explicit and partly dynamic.

In order to achieve MPLS-TE, the engaged routers should support the

following mechanisms, as they are defined on Cisco’s site [20]:

e Label-switched path (LSP) tunnels, are signaled through RSVP,
with traffic engineering extensions. The LSP tunnels are represented as tunnel
interfaces. Tunnels have a preconfigured destination, and they are unidirectional.
This last issue means that a return tunnel must be established if full duplex

communication is desired.

e A link-state IGP (such as OSPF) with extensions for the global
flooding of resource information, and extensions for the automatic routing of

traffic onto LSP tunnels must be selected as appropriate.

e An MPLS-TE path calculation module determines paths to use for
LSP tunnels. This is not necessary if the tunnel configuration is manually created,

such as in a LAN or small WAN.
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e An MPLS-TE link management module that does link admission

and bookkeeping of the resource information to be flooded.

e Label switching forwarding, provides routers with a Layer 2-like
ability to direct traffic across multiple hops as directed by the resource-based
routing algorithm.

A method to implement MPLS-TE is described on Cisco’s site [20] as
follows:
One approach to engineer a backbone is to define a mesh of
tunnels from every ingress device to every egress device. The IGP,
operating at an ingress device, determines which traffic should go
to which egress device, and steers that traffic into the tunnel from
ingress to egress. The MPLS traffic engineering path calculation
and signaling modules determine the path taken by the LSP tunnel,
subject to resource availability and the dynamic state of the
network. For each tunnel, counts of packets and bytes sent are
kept. Sometimes, a flow is so large that it cannot fit over a single
link, so it cannot be carried by a single tunnel. In this case multiple

tunnels between a given ingress and egress can be configured, and
the flow is load shared among them. [20]

D. PREVIOUS STUDIES OF BGP BLACKHOLE ROUTING (BGP BHR)

There have been a few studies carried out that talk about the analysis of
DDoS mitigation with BGP BHR. The most complete and analytical is N.
Stamatelatos’ thesis, A Measurement Study of BGP Blackhole Routing
Performance.[2] There is also a second study, V. Puri’'s Automated Alerting for
Blackhole Routing,[3] which extends the research done by N. Stamatelatos’

thesis.

Stamatelatos used a real test-bed network to evaluate the effectiveness of
various methods of BHR. The performance metric chosen by Stamatelatos was
router response time, router CPU load, and link load. He stress-tested three

implementations of the BHR concept in a lab environment.
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In Stamatelatos’ study, a given DDoS attack had been positively identified
by either an automated system or a human operator. The author recognized, in
the “Future Work” section, [2] that the ability to automatically identify an attack
using an IDS/IPS system would greatly improve the performance of BGP BHR

and suggested the research in this field as an area for future work.

This suggested work is what Puri’s thesis centered on. Puri managed not
only to select and configure an appropriate IDS to detect a distributed denial of
service (DDoS) attack; but to also integrate this detection capability into an
enhanced BHR system, by having the IDS directly cue the “trigger router” that
sends the null—blackhole—route update to all border routers. The result is a
working implementation of a fully automated attack-detect-react-protect BHR

system.
1. How BGP BHR Works

A BGP BHR system is one mechanism used to mitigate DDoS attacks. It
uses a feature of almost all existing routers, the NullO interface, in combination
with the BGP routing protocol in order to drop undesired packets destined to a

specific host.

The Null0 is a pseudo-interface that every router has by default. It is
always up but can never actually forward or receive traffic. Whenever a packet is
routed to NullO, it will be dropped. The purpose of the interface is to discard

unwanted traffic.

The configuration for applying BHR is relatively simple. The basic
requirement is a static route of the destination IP address to be discarded. This
configuration for Cisco routers is shown in Stamatelatos’ thesis as:

interface NullO

no i1cmp unreachables
ip route 127.0.0.0 255.0.0.0 null O

Traffic is sent to the NullO interface, and since there is no real host to
receive the packets, ICMP Unreachable replies are submitted by default. To
22



prevent this unnecessary traffic, the first two lines from the previous
configuration’s example are used. The lines first specify the interface and then
configure the router to not create ICMP Unreachable replies for this interface.
The third line is the static route. In the above example, the packets that have as
their destination the subnet 127.0.0.0/8 will be forwarded to the NullO interface.

The Border Gateway Protocol (BGP) is the most popular routing protocol
used between Autonomous Systems (AS). It is very powerful and gives network
administrators many options in applying routing policies. When used inside an
AS, it is called an internal BGP (iBGP). Routers that speak BGP establish a TCP

connection between themselves, so that the exchange of information is reliable.

In BGP BHR, blocking malicious traffic is tried as early as possible. The
most proper place to block malicious traffic is at the border routers where the
traffic enters the network. By discarding traffic at that point, the network is
protected, since no undesired traffic travels inside the AS. The basic
implementation of BGP BHR requires a pre-configuration of all border routers
with a static route entry to the NullO interface. A router inside the AS is also
configured to work as a trigger; it communicates with the border routers using
iBGP.

To apply BHR, a special static route to the IP address of the victim needs
to be added to the routing table of the trigger router. The static route contains
more information under a “tag.” Among this information, the most important is the
“next-hop,” which for BHR needs to be an IP address from the private subnet IP
addresses already configured at the border routers. The trigger will automatically
advertise the static route to the border routers, using an iBGP route update
advertisement, and the border routers will update their routing table with the new
entry, forcing all traffic destined to the victim to be routed to their null interface.
To stop BHR, the static route at the trigger router is removed and the router will

send out a route withdrawal to all border routers, again via iBGP.
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The BGP BHR is not a perfect defense against DDoS attacks. Its most
significant limitation is that it blocks traffic based only on an IP address. It cannot
be more discrete in its filtering, for example, by dropping only telnet or HTTP
packets going to the victim. Another drawback is that it is very hard to bypass or
provide exceptions to the filtering, since to do so the router’s forwarding table has

to be bypassed.

There are many variations to the basic Blackhole routing technique, all of
which can be categorized as one of two basic implementations: the Remote-
Triggered (RTBH) and the Customer-Triggered. The main distinction between the
two is the origination of the filtering command. The RTBH routing can be further
divided into either destination-based routing or source-based routing, depending
on what information (the source or the destination IP address) is used to block

traffic.

The following sub-sections briefly discuss the network setup followed for

both previous researches.

2. Lab Setup/Test Bed

a. Lab Setup in Stamatelatos’ Research

Stamatelatos evaluated the performance of BHR methods in the lab
with three real-time test-bed networks. He selected seven routers to simulate the
various environments that depict the real-time AS. Stamatelatos utilized his
chosen performance metrics in his test beds. A brief discussion of the three test-
bed networks he used is as follows:

(1) Test-Bed Network #1. The main task of this test-bed network
was to evaluate the performance of both the methods of remote-triggered BHR,
i.e., destination-based and source-based. Stamatelatos simulated an AS
environment with three border routers, two internal routers, and one trigger
router. In this test bed, malicious traffic would approach the AS from different

sources. In addition, traffic would also traverse through different border routers.
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Once the attack began, the trigger router inside the AS was configured to
advertise either source-based or destination-based BHR to evaluate both the

techniques.

(2) Test-Bed Network #2. The main purpose of test-bed network #2
was to evaluate customer-triggered BHR and then compare its performance with
remote-triggered BHR. Stamatelatos simulated this test bed by maintaining the
same topology as discussed in test-bed network #1. The only difference was the
positioning of the trigger router. The trigger router was placed in line with the

target-host to simulate the customer network.

(3) Test-Bed Network #3. The purpose of test-bed network #3 was
to evaluate the performance of BGP BHR in a network where the routers have
sufficient CPU capacity but some of the internal links of the victim’s network
become congested during an attack. The researcher simulated this to evaluate
performance when the limiting factor could be the link load, not the router CPU
load. He utilized five routers, one of which is Juniper router with a relatively high
CPU capacity, to simulate this test bed. The topology was different from test-bed
networks #1 and #2.
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Figure 8. Stamatelatos’ topology for test-bed #3 (From: [2])
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b. Lab Setup in Puri’s Research

Since Puri’'s work continued Stamatelatos’ study, he had to select
one of the above test-beds and techniques. He finally chose to work with the

customer-triggered BHR technique.

He used a test-bed close to Stamatelatos’ test-Bed Network #3, but
simplified. More specifically he used two instead of three border routers for his
AS. Instead of that, the rest of the components were placed by using almost

identical topology.
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Figure 9.  Puri’'s test-bed (From: [3])
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3. Research Conclusions

a. Stamatelatos’ Research Conclusions

e Resource overload may disrupt the BGP session between the
trigger router and a border router and thus degrade the performance of BGP
BHR.

e Customer-triggered BHR is not as effective as other technigques.
e Destination-based BHR performed best in test-bed simulations.

e The BHR would be totally inefficient if applied 40 seconds or more
after the DDoS attack initialization (especially with high link load).

b. Puri’s Research Conclusions

e The BHR proved to be one of the fastest ways to mitigate DDoS
attacks on the network. Once an attack was detected, the system mitigated the

DDoS attack in close to 20 seconds.

e The automation of BHR is not only an adaptable and useful
technique, but it is also an efficacious and productive technique to mitigate DDoS

attacks.

e Though BHR cannot be the sole solution to mitigate a D/DoS
attack, it is recommended that the BHR solution be one of the mechanisms
available to safeguard the target(s) and network resources from annoying D/DoS

traffic within an AS.
4, Comments on Prior BGP BHR Work

Stamatelatos’ thesis was focused on the BGP BHR performance by
assuming that a DDoS attack had previously been recognized. Hence, the first

shortcoming of his study was the absence of IDS.
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Another shortcoming was the absence of automation. He manually added
the static route to the trigger router to advertise the null route. When a network is
under attack, time is critical. By manually typing a command of 35 characters
extra delay time to the system’s response is added, no matter how quickly one
can type. If the time needed to connect with the server via telnet is also added,

this approach proves to be unrealistic for real world systems.

Another major shortcoming in that research was in its conclusion.
Stamatelatos concluded that customer-triggered BHR is least effective. He did

not explore how this technique could be effective.

Puri’s thesis actually extended Stamatelatos’s work and addressed the
issues that Stamatelatos’ thesis had. At the beginning an IDS (Snort®) was
employed in order overcome the first shortcoming as stated above in this
paragraph. Second, he added automation (SnortSam) in order to add the static
route to the trigger router to advertise the null route. He also used customer-
triggered BHR and he proved that this technique is as effective as the remote
triggered is.

Even if Puri had managed to overcome the major disadvantages that
Stamatelatos’ approach had, both of those studies still have not overcome the
significant disadvantages that the BGP BHR technique has. The main
disadvantages are:

e All the traffic flow, malicious or not, from each edge router is
discarded during the attack. In other words, the attacker ultimately still wins. The
victim server is no longer reachable from any other AS and so there is a Denial of

Service.

e Which router to block or not cannot be determined, thus all routers

have to be blocked, including those that are connected to a secure network.

e The discarded traffic is lost forever. It cannot be analyzed and
perhaps “cleaned” in a dedicated place.
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e A false positive response would result in a self-inflicted DoS attack.

e The response time of 20 seconds is acceptable within a relatively

small network, but for a wide AS better performance has to be achieved.
These shortcomings have been overcome in this thesis research by
engaging the MPLS-TE technique in combination with the services of IDS and

the automated process of route advertisement that Puri used in his work.

E. EXISTING MPLS-TE TECHNIQUES FOR DDOS MITIGATION

Although it has great advantages, only two proposed techniques were
found in the literature about the usage of MPLS-TE for DDoS mitigation.

1. MPLS-based Traffic Shunt

The first of them was presented during the 28" North American Networks
Operators’ Group’s (NANOG) meeting in June 2003 in Salt Lake City, Utah [21].
The working team consisted of Yehuda Afek from Riverhead Networks, Roy
Brooks from Cisco Systems and Nicolas Fischbach from COLT Telecom. The
last participant presented the same work in September of the same year during
the 46" Réseaux IP Européens Network Coordination Center's (RIPE NCC)

meeting in Amsterdam, Netherlands [22].

The title of their work was “MPLS-based Traffic Shunt.” With their
presentation they proposed a new protecting method against DDoS by the usage
of MPLS benefits in combination with the establishment of an *“Inspection
Device.” The Inspection Device is actually a sinkhole router with a sinkhole
server. A sinkhole router does exactly what a border router does when BGP BHR
is used. The difference is that in this case and after the attack’s detection a static
route on a preselected core router (sinkhole router) is added which sends all the
traffic destined for the victim to a dedicated interface as the NullO in the BGP
BHR method. This time, however, the BGP advertises that the victim is now

connected on the sinkhole router. The sinkhole routing method adds an overload
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to the network, since it carries all the malicious traffic through the network, but it
provides the ability for a centralized inspection (on the sinkhole server) of the

traffic—forensics.
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Figure 10. DDoS mitigation with the Sinkhole router technique (After: [21])

They proved that the sinkhole technique combined with traffic engineering
techniques could provide a new capability. They could redirect the inspected and
cleaned traffic back to the victim through the same network. With this new
capability the network completely addresses the DDoS attack. Specifically, the
MPLS-based traffic shunt has the following advantages [22] against the sinkhole

method:
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a. The MPLS-based method is bi-directional, which means legal traffic
can be sent back to the target, losing only a small amount of non-malicious

packets during the attack instead of all of them.

b. Since it used preconfigured tunnels, it does not add any overhead
to the routers. The sinkhole routing without MPLS is based on IP techniques

which add more routing complexity.

c. No additional software or hardware is required, since the routers
employed already support MPLS.

In order to achieve their configuration, the team proposed the employment
of tunnels from the peering/upstream routers to the inspection device and from
the inspection device to the end system. They provided the following limitations
[22] that this technique implies:

e Careful setup is required to avoid loops.
e Returned traffic must not pass through a peering router.
e Processing overhead for the sinkhole server is added.

They introduced two different methods to implement their MPLS-based
traffic shunt. The first one was with pure MPLS using proxy LSP, which is going
to be implemented in this thesis work, along with iBGP routing protocol in
correspondence with the IP-based sinkhole technique described previously in
this section. The main difference is that now the sinkhole server will be replaced
by a “Cleaning Center” which has the capability to clean the traffic, drop the
malicious packets and redirect the clean packets to their original destinations
using the MPLS-TE attributes.
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The second proposed method from this first team was MPLS Virtual
Private Networks (VPNs) using Virtual Routing and Forwarding (VRF), which
actually is not a traffic engineering technique, and thus is out of the scope of the

research for this thesis.

This author could not find any official report about the above methods,
except for a power point file from their presentations at NANOG28 and RIPE46,
even if after contact with the authors. So, there is no information as to how they
achieved the attack detection, in other words, what IDS they used, or what kind

of automation they used to trigger their sinkhole router.

At their presentations’ conclusions [22] they stated that their techniques

were:
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e Actually deployed, not only in the lab.
e Proved easy to deploy, maintain and use.

e Improved DDoS detection, mitigation and analysis/post-mortem in
conjunction with Netflowbased detection solution and customer profiling (filtering

templates).
2. Sinkhole Routing with BGP Group Attributes

The second MPLS-TE technique found in the literature for DDoS
mitigation was issued as a white paper in January 2007 by Huawei Technologies
Co. Ltd. with the title “Technical White Paper for Sinkhole Routing”.[23]

The authors here used also the already shown sinkhole router method, but
this time they went one step further. They focused on the usage of the group
attributes of BGP routing protocol in order to achieve great scalability in their
solution. They confirm in their paper that with their configuration, based on the
BGP group attributes, they can achieve better performance of the protecting

system.

This solution needs to assign a special group attribute value to all area
border routers that may lead attacks in the ISP autonomous area in advance.
With this technique, each border router is assigned a specific group attribute
value. If a received route update report carries special group attributes assigned
to this router or group attributes specifying all border routers, it will change the
next hop attribute into the network segment address of a specific RFC 1918. So,
traffic can be redirected only from attacked border routers and not from all of
them. As a result, legal traffic on the routers not attacked will access the attacked
host along a normal path, but the area border router of the attack entrance will
block illegal traffic to reduce attack influence. At the same time since the route
information of the core route remains unchanged, the access from the inside of

the ISP to the objective host will not be affected.
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With this solution they reduced the processing overhead of the sinkhole
router and server (cleaning center). The proposed technique is actually an

improved version of the above MPLS-based traffic shunt [21] technique.

The Huawei paper [23] does not make any reference to how to configure
the MPLS-TE, the used security analysis/record facilities and the way the
automated response can be achieved. Instead of that, they provide an example
which gives the reader an abstract idea of how the techniques should be
configured and should react as in the following figures.

Sinkhole Router

122.1.1.0/24 1

Server A Server B
122.1.1.1 122.1.1.2

Figure 12. Attack to service A. (From: [23])
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In their summary part of the paper the authors conclude that the sinkhole
routing technology combined with the enhanced BHR technology triggered by the
BGP can reduce the DDoS’s attack damage. They continued by stating that
when this solution is integrated, in parallel with the ACL technology, the results

are reduced network workload and better analyzed traffic.
3. Comments on Prior MPLS-TE Work

The above techniques are based on the same idea of sinkhole routing.
The second idea can be seen as an improved version of the first. Both use BGP
routing protocol to force the edge routers to redirect the traffic destined to the
victim at the sinkhole router. After this point, the already preconfigured tunnels
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route the traffic to the sinkhole router. This approach implies an extra overload to
the routers and increases the response time. In both proposals, there is a lack of
real world results and there is no reference to the techniques’ performance. In
the first approach a reference to an actual deployment is done, but no other
details are provided. Both of the works claim that better results were achieved,
but they do not provide any evidence, or any comparison with the previous

techniques.

The technique used in this current study borrowed the sinkhole routing
idea in combination with the MPLS-TE, as in the previous two techniques. The
main difference is that this research did not use BGP protocol. The installed
routing protocol was OSPF and the redirection of the traffic to the sinkhole router
made through telnet sessions between the trigger server and each of the edge

routers.
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lll. SETUP OF TEST-BED

A. CHAPTER OVERVIEW

This chapter describes the laboratory set-up of the MPLS-TE network
used for this thesis research. Section B presents the overall network architecture
of the MPLS-TE laboratory setup and the basic configuration for the LER and
LSR routers. This is followed by a detailed description of the various parameters
of interest and the required hardware and software configuration for evaluating
the effectiveness of an MPLS-TE based solution against DDoS attacks. The last
Section describes the software tools used to detect a DDoS attack and trigger an

automated response against the attack.

B. NETWORK’S CONFIGURATION

1. General

For a fair comparison with previous BGP BHR studies, the author chose to
build a test-bed close to that used by Puri. The main difference in this current
test-bed is the packet routing technique which, in this case, is MPLS-TE over IP
instead of plain IP. For the same reason, the author elected to use identical or

newer versions of the software in Puri’s attack detection and response system.
2. Hard ware

The following devices are used for this research test bed network:

e Four Cisco routers with I0S C3620 software, Versions 12.2(17a),
12.2(24a), 12.2(29) and 12.2(3) with four 10 Mbps Ethernet
Interfaces, used as Border Routers.
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e One Cisco router with 10S 3600 software, Version 12.2(3) with four
10 Mbps Ethernet Interfaces and one 100 Mbps Fast Ethernet

Interface used as an internal router.

e One Smart Bits 6000C Performance Analysis System of Spirent, for
packets’ generation.

e Three desktop PCs with Windows XP SP 2. One is used for Smart
Bits’ and routers’ configuration. The second one as an attack
monitor connected with LER2. The third one is used as a target

machine.
¢ One desktop PC with Fedora 8.0 is loaded on with the IDS.

e One LAN-3321A TeraMetrics XD module with two 10/100/1000
Mbps Ethernet Copper ports and two 1 Gigabit Ethernet Fiber ports
installed on the Smart Bits 6000C system. Both the copper ports

are used to simulate a D/DoS attack.
e One Hub used to create a subnetwork between the IDS's and the
target’s machines.

3. Sofw are

The applications used for this research are as follows:

Smart Window version 7.70.128, for use with the Smart Bits 6000C

system to generate attack traffic.
CommView version 6.0 of Tamosoft, for crafting custom ICMP packets.

Wireshark version 1.0.0 and 1.0.3 Network Protocol Analyzer on Windows
XP machines.

Wireshark version 1.0.3 Network Protocol Analyzer on Linux 2.6.26.5-

28.fc8 for monitoring the target network traffic.

Snort® version 2.6.1.3 as the Intrusion Detection System (IDS).
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SnortSam added as a plugin program to the Snort® package in order to

achieve automated detection of and response to the attack.
4, Topology and MPLS Tunnels

The following figure shows the implementation of the MPLS-TE network
set-up in the laboratory. The MPLS-TE network is formed by five routers. One
LSR router performs label switching and emulates the core of an MPLS network
backbone. Four LER routers are entry and exit points to the network. Each LER
router is directly connected to the LSR router. The LER2 and LERS3 routers are
connected, also, to the Smart Bits 6000C through its LAN-3321A TeraMetrics XD
Ethernet Copper ports. The DDoS attacks are launched from those two points.
The LER4 is connected with the target's sub-network. The target's sub-network
includes one Windows XP desktop, acting as the target host, and another Fedora
Linux machine, acting as the IDS/automation system. Both of those machines
are connected through a HUB to the LER4. Finally, LER1 is connected with a
Windows XP desktop, which simulates the cleaning center.
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Figure 15. Network topology

Nine MPLS tunnels have been preconfigured with MPLS-TE parameters
and their basic characteristics are described in the following table:
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Tunnel From To Bandwidth
10 LER3 LER4 4800 kbps
11 LER3 LER1 4800 kbps
12 LER2 LER1 4800 kbps
13 LER2 LER4 4800 kbps
14 LER4 LER1 100 kbps
15 LER4 LER2 4800 kbps
16 LER4 LER3 4800 kbps
17 LER1 LER2 4800 kbps
18 LER1 LER3 4800 kbps
19 LER1 LER4 100 kbps

Table 1.  Preconfigured MPLS-TE tunnels

The purpose of tunnels 11 and 12 is to divert the attack packets from their
ingress routers to the cleaning center. The rest of the tunnels are used for normal

traffic.

When an attack is detected by the IDS installed on the Fedora machine,
the plug-in program to the IDS is activated and starts a telnet session at the
beginning with the cleaning center’'s LER router — LER1 — and adds a static route

as follows:

ip route 192.168.3.1 255.255.255.255 interface ethernetl/0

Sequentially, it starts telnet sessions with LER2 and LER3 — one at a time

— and adds the following static routes:

Ip route 192.168.3.1 255.255.255.255 interface Tunnell2 on
LER2 and, ip route 192.168.3.1 255.255.255.255 iInterface

Tunnelll on LER3. The ip address 192.168.3.1, was added earlier as a
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second ip address, on the "clean center” machine connected on interface
Ethernet 1/0 of LER1. Consequently, LER2 and LER3 will forward all traffic
destined to the target host for the cleaning center. From this point forward the
DDoS attack can no longer impact the target host, similar to what happens when
using BGP BHR methods. However, this technique provides one significant
advantage. The traffic from the edge routers is not simply discarded. It is directed
to the cleaning center, where it can be analyzed and cleaned and the legal part
of it can be redirected back to the attacked machine through the same MPLS-TE

network used during the attack.
5. Router Configuration (Edge, Core)

This Section shows the configurations required to set up the LER and LSR
routers for the MPLS-TE test-bed. The configuration files for the rest of routers in

the test-bed are presented in Appendix A.
a. Installing LER Router

The four LER routers are Cisco 3620 routers running the Cisco
Internetworking Operating System (IOS) version 12.2. The connection between
the LER routers and the LSR router are established using Ethernet interfaces.
Table 2 shows the MPLS-TE configuration for one of the LER routers — LER2.

Configuration of LER router — LER2

Current configuration : 1872 bytes
!

version 12.2

service timestamps debug uptime
service timestamps log uptime

no service password-encryption

!

hostname LER2

!

!

ip subnet-zero

!

!
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!

ip cef

mpls traffic-eng tunnels
call rsvp-sync

interface LoopbackO
ip address 192.168.10.4 255.255.255.255
|

interface Tunnell12

ip unnumbered Loopback0

tunnel destination 192.168.10.5

tunnel mode mpls traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 4800
tunnel mpls traffic-eng path-option 1 explicit name sec-LSR1
I

interface Tunnell3

ip unnumbered LoopbackO

tunnel destination 192.168.10.2

tunnel mode mpils traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 4800
tunnel mpls traffic-eng path-option 1 explicit name def-LER4
I

interface Ethernet0/0

ip address 192.168.1.128 255.255.255.0
half-duplex

I

interface Ethernet0/1
description Connection to LSR1
ip address 192.168.4.128 255.255.255.0
half-duplex

mpls traffic-eng tunnels
tag-switching ip

priority-group 1

ip rsvp bandwidth 10000 10000
|

interface Ethernet1/0

no ip address

shutdown

half-duplex

|

interface Ethernetl/1

ip address 192.168.0.102 255.255.255.252
full-duplex

!
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router ospf 99

router-id 192.168.10.4
log-adjacency-changes

network 192.168.0.0 0.0.255.255 area 0
mpls traffic-eng router-id LoopbackO
mpls traffic-eng area 0

|

ip classless

no ip http server

|

ip explicit-path name sec-LSR1 enable
next-address 192.168.4.1
next-address 192.168.7.128

I

ip explicit-path name def-LER4 enable
next-address 192.168.4.1
next-address 192.168.6.128

I

priority-list 1 protocol ip high tcp telnet
priority-list 1 protocol ip low

!

!
dial-peer cor custom
!

I

!

!

line con 0

password vordos
login

line aux 0

linevty 0 4
password vordos
login

!

end

Table 2.  MPLS-TE Configuration of LER Router — LER2

The “tag-switching ip” command in the router configuration enables
MPLS for a network interface. It is an alternative to the “mpls 1p” command
available in newer Cisco IOS versions. In the sample configuration above, the
“tag-switching i1p” command is used for the network interface connecting to
the LSR router.

As stated in the Background chapter each MPLS-TE router should use at
least one layer three routing protocol of the Interior Gateway Protocol (IGP) type.
The most commonly adopted IGPs for MPLS-TE are OSPF and IS-IS (link state
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protocols) in MPLS configurations as they are the only two IGPs that support
MPLS traffic engineering. The 1S-IS uses new Type-Length-Values (TLVSs);
OSPF uses type 10 Link-State Advertisements (also called Opaque LSAS).[24]
There is no strong reason to use one IGP over the other for the laboratory set-up.
The OSPF is the author’s selection for the configuration presented above. The
next step is to enable the routing protocol (OSPF) to operate in the MPLS-TE
environment by entering the commands “mpls traffic-eng router-id

LoopbackO” and “mpls traffic-eng area 0.”

In order to enable the MPLS-TE features of this test-bed, the command
‘mpls traffic-eng tunnel” shown in Table 2 is used. A tunnel’s
configuration starts with the command “interface TunnelX,” where X is the
tunnel’s number. Subsequently, the tunnel’s destination must be specified with
the command “tunnel destination XXX.XXX.XXX.XXX,” where the ip
address is the destination LER’s LoopbackO address. In order to enable the
ReSerVation Protocol (RSVP) the command “ip rsvp bandwidth 10000” is

entered on each concerned interface for non-zero bandwidth tunnels.

Then, the tunnels to be used for TE are set up. There are many options
that can be configured for an MPLS TE tunnel, but the command “tunnel mode
mpls traffic-eng” is mandatory. The “tunnel mpls traffic-eng
autoroute announce” command met on this configuration announces the
presence of the tunnel by the routing protocol. The priority of the tunnels has
been set to 7, which is the highest possible value and corresponds to the lowest
forwarding priority. The bandwidth is mostly specified to 4800 kbps with the
command “tunnel mpls traffic-eng bandwidth 4800.” Only two
tunnels have a different bandwidth of 100 kbps. They are used to connect the
target's LER — LER4 and the cleaning center's LER — LER1, and hence, a
smaller bandwidth is sufficient.
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We define the name of the explicit route i.e., “def-LER4” with the
command “tunnel mpls traffic-eng path-option 1 explicit name
def-LER4.”

As can be seen in the above configuration, each tunnel is considered as a
router’s interface. The “ip unnumbered LoopbackO” configuration command
allows enabling IP processing on a serial interface without assigning it an explicit
IP address. That interface can "borrow" the IP address of another interface
already configured on the router (the LoopbackO interface in this case), which
conserves network and address space [25]. After each tunnel's initial
configuration the explicit route is defined in a hop — by — hop manner with the

command “ip explicit-path name def-LER enable.”

In the test-bed, all nine tunnels are implemented by using the “explicit
paths” method (i.e., manually by the administrator). The implementation of
dynamic tunnels (automatically set up by the ingress LER), has been avoided
since the diversion path should be clearly defined by the network’s administrator
in order to lead the malicious traffic to the cleaning center, through a “safe” route.

The command “priority-list 1 protocol 1i1p high tcp
telnet” gives the highest priority to Telnet packets, while the command
“‘priority-list 1 protocol ip low” gives a lower priority to the rest of
the tcp packets. The command “priority-group 1" under the definition of

interface “Ethernet0/1” dictates the interfaces to follow this priority arrangement.

Finally, the passwords to protect the router from unauthorized access are
set up. The command “bline con 0" sets the password to restrict configuration
change with the command “enable” in a console window. The command “line
vty 0 4’ sets the password to control inbound Telnet connections. Both

passwords, for simplicity, are set to “vordos” on all routers.

48



The configuration of the rest of LER routers is similar to the one in Table 2
except for the values of some parameters such as the IP addresses for the

loopback interfaces, and IP addresses for network interfaces.
b. Installing LSR Router

The configuration of the LSR router is simpler than the LER routers
because MPLS tunnels are already configured at the ingress edge routers. Like
the LER routers, a Cisco 3620 router with Cisco 10S 12.2(3) is used for the LSR

router. Table 3 shows the configuration for the LSR router—LSR1.

Configuration of LSR router — LSR1

Building configuration...

Current configuration : 1577 bytes
!

version 12.2

service timestamps debug uptime
service timestamps log uptime

no service password-encryption

!

hostname LSR1

!

!

ip subnet-zero

!

I

!

ip cef

mpls traffic-eng tunnels

call rsvp-sync

interface LoopbackO
ip address 192.168.10.1 255.255.255.255
|

interface Ethernet0/0
description connection to Router LER1
ip address 192.168.7.1 255.255.255.0
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half-duplex

mpls traffic-eng tunnels
tag-switching ip

priority-group 1

ip rsvp bandwidth 10000 10000
I

interface Ethernet0/1

description connection to LER3

ip address 192.168.5.1 255.255.255.0
half-duplex

mpls traffic-eng tunnels

tag-switching ip

priority-group 1

ip rsvp bandwidth 10000 10000

|

interface Ethernet0/2

description connection to LER2

ip address 192.168.4.1 255.255.255.0
half-duplex

mpls traffic-eng tunnels
tag-switching ip

priority-group 1

ip rsvp bandwidth 10000 10000

|

interface Ethernet0/3

description connection to LER4

ip address 192.168.6.1 255.255.255.0
half-duplex

mpls traffic-eng tunnels
tag-switching ip

priority-group 1

ip rsvp bandwidth 10000 10000

|

interface FastEthernet1/0

no ip address

shutdown

duplex auto

speed auto

|

router ospf 99

router-id 192.168.10.1
log-adjacency-changes

network 192.168.0.0 0.0.255.255 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0

|

ip classless

no ip http server

|

priority-list 1 protocol ip high tcp telnet
priority-list 1 protocol ip low

I

!

dial-peer cor custom

!
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|

|

!

gatekeeper
shutdown

|

!

line con 0
password vordos
line aux 0

linevty 04
password vordos
login

|

end

Table 3. MPLS-TE Configuration of LSR Router — LSR1

6. Target

One Windows XP machine is selected as a target machine. The IP
address 192.168.3.1 is assigned to this Windows machine. Wireshark is loaded
onto this machine to capture the packets and to note the efficacy of the DDoS

attack.
7. Traffic Generator

To test the effectiveness of the selected MPLS-TE technique, DDoS
attacks for the test-bed network described above must be created. The hardware
available for this task is the SmartBits 6000C Performance Analysis System of
Spirent Communications, with one LAN-3321A TeraMetrics XD module with two
10/100/1000 Mbps Ethernet Copper ports and two Gigabit Ethernet Fiber ports.
The system offers the ability to create customized layer-three and layer-four

packets in IPv4 and IPv6 formats.

Furthermore, it provides the user with the capability to customize layer-two
information (i.e., source and destination MAC address). All the ports of the

module can operate in full or half duplex mode. The interfaces act as regular
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hosts inside a network. To control the system, the SmartWindow version
7.70.128 Graphical User Interface (GUI) application is used. The figures below
present the main screens of this application.
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Figure 16. SmartWindow screen for device selection
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Figure 17. SmartWindow main screen for SmartBits 6000C device

Since the purpose of this study was to test the MPLS-TE network’s
reaction on a massive DDoS attack, a sophisticated attack does not have to be
engineered. So, the author chose a simple attack to implement in the laboratory:
an ICMP flood attack. As described in the Background chapter, in this kind of
attack, the attacker sends a large number of ICMP_ECHO packets (“ping”) to the
victim system. An ICMP flood attack is very easy to be addressed by applying a
simple rule on the router's ACL, which blocks all the incoming ICMP packets.
However, since this attack was used in previous BGP BHR studies, this solution
is followed for comparable results in this study.

To craft the ICMP packets used for the attack, CommView version 6.0 of
Tamosoft and Wireshark are used. Once the desired ICMP packets are crafted,
the Smart Bits 6000C system, with LAN-3321A TeraMetrics XD module with two

53



10/100/1000 Mbps Ethernet Copper ports, is used to simulate the DDoS attack.
The in-depth explanation of this entire process is provided in Puri's thesis
Appendix H [3].

C. AUTOMATIC INTRUSION DETECTION SYSTEM

1.  IDS (SNORT®) Setup

This is one of the most important and critical components of the network
test-bed. There are two basic types of IDSs on the market. The first type is the
network based IDSs (NIDS) that is designed to monitor traffic for multiple hosts in
the network. The other type of IDS used to detect changes or malicious activity
for one specific host, is called a host-based IDS (HIDS). As Puri proved in his
second chapter of thesis research [3], the most suitable type of IDS for this
research is a NIDS. Since one purpose of this research is to compare the BGP
BHR with the MPLS-TE techniques, the same IDS as in Puri’'s study — Snort® is
selected. Snort® version 2.6.1 software is downloaded from the official Snort®
site. This Snort® web site reference manual and Puri's directions were very
helpful in setting up the alerter on this current network [26], [3]. Snort® i installed
on Fedora 8.0. Snort® software versions are also available for Windows, Solaris,
and others. Research has revealed that Snort® is most stable with a Linux-based
environment. The following are the step-by-step details followed for setting up

Snort.
a. Before Snort®’s Installation

Before Snort®’s installation, some basic network settings have to
be performed, installed and configured the services needed to run. During this
setup, the firewall is turned off for simplicity. While configuring the network, the
following should be clearly configured:

(1) IP Address. One IP address is allocated to the alerter. The IP

address provided to our Fedora machine is 192.168.3.2 and configured for
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Ethernet which sniffs the traffic for network 192.168.3.0/24. Since this interface
runs in promiscuous mode, there is no actual need for its IP address to belong to

a specific network.
(2) Netmask. A network mask of 255.255.255.0 is used.

(3) Gateway. As default gateway is provided the LER router's
interface address 192.168.3.128.

(4) DNS Server. In this scenario, a DNS server is not configured.

(5) Services. Ports 22, 23, 80, 443, and 3306 are enabled to
support SSH, TELNET, HTTP, SSL and MySQL services in the Fedora box.

Before installing Snort®, the following required components are

also preinstalled:

mysql, mysgl-bench, mysql-server, mysqgl-devel, php-mysql, httpd,
gcc, pcre-devel, php-gd, gd, mod_ssl, glib2-devel, gcc-c++, mysql-connector-

odbc, mysql-server, libnet10-1.0.2a, libpcap-1.10
b. Installing MySQL and Snort®

At this stage, the Snort® is installed and the MySQL database to
configure the Snort® alerts is configured. Furthermore, a few directories that

would be used by Snort® are created.

Snort® version 2.6.1 is downloaded into “/” directory. The file name
of the Snort® package is snort-2.6.1.3.tar.gz. This file is extracted and compiled

as follows:

tar zxvf snort-2.6.1.3.tar.gz

cd snort-2.6.1.3

./configure - -with —-mysql --enable-dynamicplugin
make all

make install
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The above commands successfully installed Snort® in the Fedora
machine. The third command indicates that Snort® is compiled with MySQL and

enables dynamic plug-in to the program.

The up-to-date Snort®’s rules were found on its official website,
which are downloaded into the /usr/local/src directory and are copied into newly

created directories of Snort® as follows:
mkdir /etc/snort

mkdir /var/log/snort

mkdir /etc/snort/rules

tar zxvft /usr/localsrc/snortrules-snapshot-Current.tar.gz —C
/etc/snort

cp etc/*.conft* /etc/snort
cp etc/*.map /etc/snort
In —s /usr/local/bin/snort /usr/sbin/snort

The following three commands created a Snort® user and user

group in the snort directory.

groupadd snort

useradd -g snort snort

chown snort:snort /var/log/snort

In order to get Snort® up and running, a few configuration changes
in a file called snort.conf, which exists within the /snort/snort-2.6.1.3 directory are
required. This file is edited, the string “var RULE_PATH” is located and the

variable is modified as follows:

var RULE_PATH /Zetc/snort/rules
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Then, the following string “database: log to variety of
databases” is located and the following line, directly after the commented lines,
is added:

output database: log, mysql, user=snort password=password
dbname=snort host=localhost

The line above tells Snort® to log the events in the MySQL
database. Snort® is also provided with the details of the database. The database

name is “snort,” the user name is also “snort,” and the password is “password.”

At this point, the database named “snort” in MySQL has been
created. To achieve this, the following statements are issued:

mysql
SET PASSWORD FOR root@localhost=PASSWORD(“password”);
create database snort;

grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.* to

snort@localhost;
SET PASSWORD FOR snort@localhost=PASSWORD(“password?”);
exit
The Snort® package also contained the schema for various

databases. These schema are stored in the snort-2.6.1.3 directory. The following

commands activate the database schema:
/snort-2.6.1.3/schemas
mysgl —p < create _mysqgl snort

So the database called snort has been created. Now, the Snort®

installation can be tested by giving the following command:

/usr/local/bin/snort -c /etc/snort/snort.conf
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The Snort® process creates the alert file under /var/log/snort/ on its
own. The permissions of the alert file have to be changed so that the Snort® user

can access that file. This is achieved by giving the following commands:
chown snort: snort /var/log/snort/alert

chmod 600 /var/log/snort/alert

C. Installing Snort®’s Graphic Interface

At this point, BASE and ADODB packages have to be installed. The
ADODB package provides the interface between the GUI and the MySQL
database. Additionally, the BASE package provides the graphical front end to the
snort database. These packages are downloaded from sourceforge and are
installed to ensure the proper functioning of Snort® and its customized Snort®

rule:

cd /var/www/html

tar zxvf /root/adodb490.tgz

tar zxvf /root/base-1.2.7.tar.gz
chown apache base-1.2.7

service httpd restart

Now, the http service has been restarted and the BASE is
configured by opening the browser with URL http://localhost/base-
1.2.7.

The BASE setup program starts on its own. It prompts for the path
to ADODB in the first step. The path name is given as /var/www/html/adodb.
The next step is to enter the database name, database host, database user
name, and database password. Exactly the same details as configured above in
this section are entered. Then “the submit query” button on the screen is
clicked. On-screen instructions in the setup script are followed to create the

database tables used by the BASE application. When done, the “Create BASE
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AG” button is clicked and the tables are created. The next screen is the login

screen. The login credentials are entered and the BASE main screen appears as

in the following figure:

9 Applications  Places System @ % [Z root Sun Jan 25, 4:28 PM i}s)

Basic Analysis and Security Engine (BASE) 1.2.7 (karen) - Mozilla Firefox
Ele Edit View History Bookmarks Tools Help

(23 - - @ /IJ} ‘i'_[ http:/flocalhost/base-1.2.7/base_main.php [=]®&] 377'| &)

£ Release Notes | IFedora Project | JRed Hat | )Free Content

unique listing Source IP  Destination IP

unique listing Source IP Destination IP Time Wind
unique listing Source IP Destination IP
any protocol TCP ubpP ICMP
any protocol TCP upP
tination Ports: any protocol TCP uop Search
Frequent Source Ports. any protocol TCP upP Graph Alert Data
Frequent Destination Ports: any protocol TCP UDP Graph Alert Detection Time
- Most frequent 15 Addresses Source Destination

- Most recent 15 Unique Alerts
- Most frequent 5 Unique Alerts

SensorsiTotal: 1/3 Traffic Profile by Protocol
Unique Alerts: 3 TCP (14%)
Categories: 2 |
Total Number of Alerts: 22

UDP (0%)
 SicIP addrs: 3 [ l
. 2
Dest. IP addrs: 3 ICMP (86%)

# Unigue IP links 3 4_
© TCP (0) UDP (0) I |
 Dest Ports: 0 Portscan Traffic (0%)
© TCP (0) UDP (0) [ |

® Source Ports: 0

Alert Group Maintenance | Cache & Status | Administration
3

| Done

|
i@i | @ Basic Analysisand ... | [ [etho: Capturing - Wi... | &3 [root@localhost:/snor... | ﬁzr@z

Figure 18. BASE snapshoot

To enable the BASE graphing capability the php-pear-1.6.2-

2.noach.rpm and php-gd-5.2.6-2.i380.rpm packages are installed and the

following commands entered:

pear
pear
pear

pear

install Image_Color
install Log
install Numbers Roman

install http://pear.php.net/get/Numbers_Words-

0.15.0.tgz

pear

install http://pear.php.net/get/Image_Graph-0.3dev4.tgz

59



2. Automation of Attack Response

The DDoS mitigation technique introduced by this thesis research is a
reactive technique. To achieve the automated response, the Intrusion Detection
System should not only log events, but also react to the attack attempts. Such a
behavioral enhancement turns the IDS (detection only) into an Intrusion

Detection and Prevention (IDP) solution.

Snort® provides the capability to analyze data and take action based on
the results. Techniques used to take action can be written in one’s own custom
script, using an available plug-in, by writing one’s own plug-in. As Puri stated in
his study:

After thorough research, it was found that a Snort has been

extended with an output plug-in that notifies the SnortSam agent of

blocking requests on a rule basis. SnortSam, developed by Mr.

Frank Knobe (www.snortsam.net) is an intelligent agent that allows

Snort to block connections by configuring firewalls or routers.

SnortSam requires the Snort rule to be modified. The biggest

advantage of this SnortSam agent is that it is built on the client-

agent-based concept. SnortSam runs as an independent process
and does not increase the workload of Snort.

For the above advantages and in order to produce comparable results
with Puri’'s research, the SnortSam plug-in program is chosen to achieve the
IDS’s automatic reaction.

3. Install SnortSam
The SnortSam is installed in accordance with SnortSam’s installation
guide [27].

The source file (snortsam-src-2.60.tar.gz) has been downloaded from the
SnortSam web site at http://www.snortsam.net and installed by issuing the

following commands:
tar zxvf snortsam-src-2.60.tar.gz

cd snortsam
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chmod +x makesnortsam.sh
./makesnortsam.sh

Since SnortSam is compiled, the binary is copied into the folder

/Jusr/local/bin.

The next step is to add the SnortSam plug-in into Snort®. The snortsam-
patch.tar.gz file from the SnortSam web site is downloaded and the following

commands are entered in order to install it:
tar zxvf snortsam-patch.tar.gz
chmod +x patchsnort.sh
./patchsnort.sh /snort-2.6.1.3/
Then Snort® is configured with the commands previously shown.

After installing the SnortSam module, the snortsam.conf file, located under
the /snortsam/conf directory, is configured. The file is edited and the following

lines, after all the commented lines are added:

accept 192.168.3.0/24

accept localhost

logfile /var/log/snortsam.log

daemon

cisconullroute 192.168.10.5 vordos vordos
cisconullroute 192.168.10.3 vordos vordos
cisconullroute 192.168.10.4 vordos vordos

The above configuration tells the SnortSam client to accept the
connections from the local host as well as 192.168.3.0/24 (the IDS’s
subnetwork). The logfile option tells it where to log files. Finally, the commands
‘cisconullroute 192.168.10.5 vordos vordos” ,"cisconullroute
192.168.10.3 vordos vordos” and “cisconullroute 192.168.10.4
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vordos vordos” tells the client to use the cisconullroute plug-in three times
with a different router's IP address each time; 192.168.10.5, 192.168.10.3 and
192.168.10.3 are the IP addresses of the routers where the SnortSam module
will log in. The first “vordos” is the login password for the telnet session and the
second “vordos” is the password to enter the configuration mode of the Cisco

router.

The next step is to reconfigure the /etc/snort/snort.conf file. The output
plug-in needs to be added so that Snort® can send the block request of the

destination IP address. The following command is added in the snort.conf file.

output alert fwsam: 127.0.0.1

That command told Snort® to send the blocking request to the local
machine. The IP address 127.0.0.1 indicates that the SnortSam module is

configured on the same machine where Snort is configured.

Snort allows users to write their own rules as per organizational
requirements. By default, all the Snort rules are found in the /etc/snort/rules
directory. The rules folder contains a file named “local.rules” through which the
user can add customized rules. The following rule is added to this file to invoke a
blocking of the destination IP address on the Cisco routers.

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg: “ICMP
Denial of Service Test”; 1itype: 8; classtype: misc-
activity; threshold: type both, track by dst, count 100,
seconds 10; sid: 1000001; rev: 1 ; fwsam: dst, 20 minutes;)

In general, this rule will look for a minimum of 100 ICMP echo request
packets within 10 seconds before generating an alert and then ignore the rest of
the packets. The option “fwsam: dst, 20 minutes;” at the end of the rule
body told Snort® to invoke a block of 20 minutes on the destination address via
the SnortSam module whenever the above rule fired. The alert is presented on
the BASE interface with the message “ICMP Denial of Service Test’, as

in the following figure:
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Figure 19. Successful activation of custom rule

Further details for the above rule are provided in Puri’'s thesis Appendix G

[3].

After modifying the above files, we give the following command to restart
Snort.

service snortd restart
Then the following command is entered:

_/snortsam conf/snortsam.conf

From this point forward the SnortSam is running and listening for alerts
from Snort®.
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4. Modify ing the Plug-in’s Source Code

The ssp_cisco_nullroute.c is a C file and it is one of SnortSam’s plug-in
programs. Its original purpose is to perform null routing, in a BGP BHR
technique, by doing the following three things:

e Logs on the trigger router via telnet.
e [Issues a command to enter the “null-route.”

e When the time interval of blocking expires, it removes the added

route to nullO.

This program is found to be close to this research’s intentions and so the
author decided to use it with the following modifications. At the beginning its
original command “ip route %s 255.255.255.255 null O\r”is replaced

with the following 3 new commands:
ip route %s 255.255.255.255 ethernetl/0 \r
ip route %s 255.255.255.255 tunnelll \r

ip route %s 255.255.255.255 tunnell2 \r

Only one of the above commands is executed in each telnet session and
the right choice between them is based on the provided router’'s ip address by

the snortsam.conf file, through an “1f’ command.

Furthermore, the original program did not terminate each time the telnet

session and that caused delays to the response time.

Finally, each command’s number of characters is reduced to the minimum
accepted from a Cisco router, in order to further reduce each telnet session’s
duration.

The modified program now does the following.

e Logs on the cleaning center’s LER router via telnet.
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e |Issues the command “ip route

255.255_.255_255 ethernetl/0\r.”

e Logs on the LER2 router via telnet.

e Issues the command
255.255_.255.255 tunnell2.”

e Logs on the LER3 router via telnet.

e |[ssues the command
255.255_.255_.255 tunnelll.”

e When the time interval of blocking expires,

previously added static routes.

The modified C file is attached as Appendix B.
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IV. TESTI NG—RESULTS—ANALYSIS

A. CHAPTER OVERVIEW

This chapter presents the experimental results from testing the test-bed
network against a series of manufactured DDoS attacks of different intensities.
The second section of this chapter described how the network operated before
the attacks and the typical sequence of events in its response to one such attack.
The third section described the performance metrics used in this thesis. The
fourth section presented the analysis of the collected timing results from all the
attacks. Finally, in the fifth section, the performance results are compared with
those reported for BGP BHR.

B. TESING

1. Before the Attack

Before the attack, the network was under normal operation. The LER2
forwarded traffic to the target host through MPLS tunnel 13 and LER3 through
tunnel 10. Each of these tunnels was configured with a bandwidth of 4.8 Mbps.
The reverse traffic from the target host to LER2 was transported through tunnel
15 and to LER3 through tunnel 16.

The scenario is depicted in Figure 20.
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Figure 20. Test-bed before the attack

The forwarding tables of routers LER1, LER2 and LER3 before the attack
were as in the following three Tables 4 to 6. Bold letters show the default routes

for the target’s network before the attack.
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Forwarding Table of LER1 Before the Attack

LER1#show ip route

Codes: C - connected, S - static, | - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - I1S-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-1S inter area, * - candidate default, U - per-user static route
0 - ODR, P - periodic downloaded static route

Gateway of last resort is not set

192.168.10.0/32 is subnetted, 5 subnets
192.168.10.2 [110/21] via 0.0.0.0, 00:07:34, Tunnel19
192.168.10.3 [110/21] via 0.0.0.0, 00:07:34, Tunnel18
192.168.10.1 [110/11] via 192.168.7.1, 00:07:34, Ethernetl/1
192.168.10.4 [110/21] via 0.0.0.0, 00:07:34, Tunnell7
192.168.10.5 is directly connected, Loopback0
192.168.4.0/24 [110/20] via 192.168.7.1, 00:07:34, Ethernetl/1
192.168.5.0/24 [110/20] via 192.168.7.1, 00:07:34, Ethernetl/1
192.168.6.0/24 [110/20] via 192.168.7.1, 00:07:34, Ethernetl/1
192.168.7.0/24 is directly connected, Ethernetl/1
192.168.0.0/30 is subnetted, 1 subnets
192.168.0.100 [110/30] via 0.0.0.0, 00:07:34, Tunnell7
[110/30] via 0.0.0.0, 00:07:34, Tunnell18
192.168.1.0/24 [110/30] via 0.0.0.0, 00:07:34, Tunnell7
192.168.2.0/24 is directly connected, Ethernet1/0
192.168.3.0/24 [110/30] via 0.0.0.0, 00:07:36, Tunnel19

OO0 O O000OO0O0O0OO0

Table 4. LER1’s Forwarding Table Before the Attack
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Forwarding Table of LER2 Before the Attack

LER2#show ip route

Codes: C - connected, S - static, | - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
0 - ODR, P - periodic downloaded static route

Gateway of last resort is not set

192.168.10.0/32 is subnetted, 5 subnets
192.168.10.2 [110/21] via 0.0.0.0, 00:08:23, Tunnel13
192.168.10.3 [110/21] via 192.168.4.1, 00:08:23, Ethernet0/1
192.168.10.1 [110/11] via 192.168.4.1, 00:08:23, Ethernet0/1
192.168.10.4 is directly connected, Loopback0
192.168.10.5 [110/21] via 0.0.0.0, 00:08:23, Tunnel12
192.168.4.0/24 is directly connected, Ethernet0/1
192.168.5.0/24 [110/20] via 192.168.4.1, 00:08:23, Ethernet0/1
192.168.6.0/24 [110/20] via 192.168.4.1, 00:08:23, Ethernet0/1
192.168.7.0/24 [110/20] via 192.168.4.1, 00:08:23, Ethernet0/1
192.168.0.0/30 is subnetted, 1 subnets
192.168.0.100 is directly connected, Ethernetl/1
192.168.1.0/24 is directly connected, Ethernet0/0
192.168.2.0/24 [110/30] via 0.0.0.0, 00:08:23, Tunnell2
192.168.3.0/24 [110/30] via 0.0.0.0, 00:08:24, Tunnel13

oCo0onOnO O0O00OO0ONOO0OO0OO

Table 5. LERZ2’'s Forwarding Table Before the Attack

70




Forwarding Table of LER3 Before the Attack

LER3#show ip route
Codes: C - connected, S - static, | - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, su - I1S-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

0 - ODR, P - periodic downloaded static route

Gateway of last resort is not set

cJoNolonNoNoNoNoNONONORQNO)

192.168.10.0/32 is subnetted, 5 subnets

192.168.10.2 [110/21] via 0.0.0.0, 00:06:02, Tunnel10
192.168.10.3 is directly connected, Loopback0

192.168.10.1 [110/11] via 192.168.5.1, 00:06:02, Ethernet0/1
192.168.10.4 [110/21] via 192.168.5.1, 00:06:02, Ethernet0/1
192.168.10.5 [110/21] via 0.0.0.0, 00:06:02, Tunnelll

192.168.4.0/24 [110/20] via 192.168.5.1, 00:06:02, Ethernet0/1
192.168.5.0/24 is directly connected, Ethernet0/1
192.168.6.0/24 [110/20] via 192.168.5.1, 00:06:02, Ethernet0/1
192.168.7.0/24 [110/20] via 192.168.5.1, 00:06:02, Ethernet0/1
192.168.0.0/30 is subnetted, 1 subnets

192.168.0.100 is directly connected, Ethernetl/1
192.168.1.0/24 [110/30] via 192.168.5.1, 00:06:02, Ethernet0/1
192.168.2.0/24 [110/30] via 0.0.0.0, 00:06:02, Tunnell1l
192.168.3.0/24 [110/30] via 0.0.0.0, 00:06:02, Tunnel10

attack launched from the SmartBits 6000C system. Different attack flows were
created with the SmartBits application. A total of eleven different attack flows
were evaluated, each with a different traffic intensity, starting from a relatively
small number of frames per second (fps) up to the maximum capability of the
packet generator for the specific connections created. Each flow was divided
equally into two parts so that about a half of the total traffic would pass through
each of the two border routers. For the final attack flow, the maximum bit- rate of
the packet generator in every port was used. These flows are presented in Table
7.

Table 6. LERS3'’s Forwarding Table Before the Attack

2. During the Attack

As stated in Chapter lll, the selected type of attack was an ICMP flood
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Attack Flow #

Total Frame Rate

Total Bit Rate

(fps) (Mbps)

1 1688 1.84
2 3376 3.34
3 5066 5.02
4 6756 6.7

5 8272 8.36
6 8444 8.53
7 10134 10.04
8 11820 11.72
9 13512 13.38
10 15202 15.08
11 16890 16.76

Table 7. Attack Flows

was below 80 percent in the test-bed. Above this level, LSR1 reached a state of
CPU overload and its behavior became very unstable. Because of that, it was

assumed that Flows #6 through #11 simulate a heavy DDoS attack for networks

Flow #5 was the maximum flow under which the CPU load of every router

where the limiting factor is the router CPU load.

here. After the attack was started, the malicious packets started to show on the
capture window of the Wireshark application running on the target host. Figure
21 shows a snapshot of that capture window. The packets of the attack flow with

The sequence of events triggered by an attack with Flow #6 is presented

their source IP address 192.168.1.101 can be identified.
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i {Untitled) - Wireshark

Fle Edit View Go Copture Analyze Statistics Help
Sdoee EERZSE A+ TF iL|(EBE QGO $EMHK O
Fier: | ~  Expression... Clear Apply
Mo Source Destination Protocel Info
.007300 Cisco_0a:lec:60 CDP/VTR/DTR/PAGP/UDLD CDRP pevice ID: LER4 pPort ID: Ethernet(/ 0
192.168.3.128 0.0.5 OSPF Hello Packet
G2.168.3.128 224.0.0.5 OSPF Hello packet
.0.0.5 OSPF Hello Packet
| 15210553
L 033311 0. R Echn (ping) reguest
.033385 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
-033605 192.168.0.101 1582.168.3.1 ICHMP Echo (ping) reguest
. 033855 152.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
.034074 192.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest
034315 192.168.0.101 162.168.3.1 ICHP Echo (ping) reguest
.034555 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
034795 152.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
035025 192.168.0.101 192.168.3.1 ICHP Echo (ping) reguest
035276 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
L035506 192.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest
.035746 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
.035986 1G62.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
.036216 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
. 036487 192.168.0.101 152.168.3.1 ICHP Echo (ping) reguest
- 0366587 1062.168.0.101 182.168.3.1 ICMP Echo (ping) reguest
.036926 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
037166 152.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
037407 162.168.0.101 1582.168.3.1 ICHMP Echo (ping) reguest
L037657 152.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
L037877 192.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest
038117 192.168.0.101 162.168.3.1 ICHP Echo (ping) reguest
.038347 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
L 038587 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
.038827 192.168.0.101 192.168.3.1 ICHP Echo (ping) reguest
.039068 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
L039257 192.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest
.039548 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
.039778 162.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
L040018 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
. 040247 192.168.0.101 152.168.3.1 ICHP Echo (ping) reguest
-040530 152.168.0.101 182.168.3.1 ICMP Echo (ping) reguest
L040728 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
. 040958 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
-041168 192.168.0.101 1582.168.3.1 ICHMP Echo (ping) reguest
.041438 152.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
041679 152.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest
041908 152.168.0.101 162.168.3.1 ICHP Echo (ping) reguest
.042138 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
L042379 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
2042619 192.168.0.101 192.168.3.1 ICHP Echo (ping) reguest
.042859 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
. 043085 1%2.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest
.043329 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
.043570 182.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
104.0437599 152.168.0.101 152.168.3.1 ICMP Echo (ping) reguest e
| # Frame 5 (74 bytes on wire, 74 bytes captured) ]
0000 00 12 3F ae 20 e0 00 07 50 Qa 1c G0 08 00 45 00 X
0010 00 3¢ 11 11 00 00 7d 01 a7 f9 cO aB 00 65 cO a8
0020 03 01 08 00 bc bf 03 00 0L 00 41 42 43 44 45 46
0030 47 48 49 4a 4b 4a 4c 4d 4e 4F 50 51 52 53 54 55
0040 00 00 00 00 Q0 Q0 00 00 00 00 v

Figure 21. Initiation of attack captured by target host’'s Wireshark application

As discussed in Chapter Ill, the IDS/automation host was connected to the
same network as the target host through a hub. Once the IDS detected the
attack, it invoked the customized “ssp_cisco_nullroute.c” program. At the
beginning the IDS/automation host (with IP address 192.168.3.2) started a telnet
session with LER1 (with IP address 192.168.10.5) and added a static route for
transporting the attack traffic to the cleaning center with the router configuration
command “ip route 192.168.3.1 255.255.255.255 ethernet 1/0” as captured in
Figure 22. The telnet session was initiated 0.033 seconds after the attack was

launched, as shown in Figure 23.
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@ root Sun Feb 1, 5:36 PM ()

ntitled) - Wireshark =

ﬂApph(atmns Places System ‘

File Edit View Go Capture Analyze Statistics Help

B@eo Qaxgs Her AT EB aaarf @b

‘E}Eilten ||talr|e't |L|| s Expression... || _f glear”qﬁ’ Apply|
Source Destination Protacol | Info Ll
192.168.10.5 192.168.3.2 TELNET  Telnet Data ...
192.168.10.5 192.168.3.2 TELMET  Telnet Data ... B
192.168.10.5 192,168.3.2 TELMET  Telnet Data ...
6 192.168.10.5 192.168.3.2 TELMET  Telnet Data .
6 192.168.10.5 192.168.3.2 TELMET  Telnet Data .
6 192.168.10.5 192.168.3.2 TELNET  Telnet Data . =
6 192,168.10.5 192.168.3.2 TELMET  Telnet Data .
6 192.168.18.5 192.168.3.2 TELMET  Telnet Data
192.168.10.5 192,168.3.2 TELMET  Telnet Data ...
192.168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192.168.3.2 TELMET  Telnet Data ...
% 192.168.10.5 192.168.3.2 TELNET  Telnet Data ...
6 192,168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192.168.3.2 TELNET  Telnet Data .
192.168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192,168.3.2 TELMET  Telnet Data ...
192.168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192.168.3.2 TELMET  Telnet Data ...
192.168.10.5 192.168.3.2 TELNET  Telnet Data ...
192,168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192.168.3.2 TELNET  Telnet Data .
192.168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192,168.3.2 TELMET  Telnet Data ...
192.168.10.5 192.168.3.2 TELMET  Telnet Data .
192.168.10.5 192.168.3.2 TELMET  Telnet Data ...
192.168.10.5 192.168.3.2 TELNET  Telnet Data ... —i
1M 168 1A 5 19 16 TELNET  Telnet Nata )

D Frame 536 (95 bytes on wire, 96 bytes captured)
D Ethernet II, Src: Dell_ae:20:c7 (08:12:3f:ae:20:c7), Dst: Cisco_Ba:lc:60 (88:67:50:0a: 1c: 66)
b Internet Protocol, Src: 192,168.3.2 (192,168.3.2), Dst: 192,168.10.5 (192.168.10.5)

b Transmission Control Protocol, Src Porti 47511 (47511), Dst Port: telnet (23], Sem: 25, Acki 167, Leni 42

- Telnet
Data: ip route 192.168.3.1 255, 255,255,255 el/o\r

(0BG B0 B7 50 Ba 1c 60 08 12 3T ae 26 c7 68 60 45 60 ..P o E.
0010 00 52 cl 2d 40 00 40 06 eb 20 cO aB 03 02 c0 ab SEE Fi
00820 0a 85 b3 97 00 17 b3 Ob 84 b9 7Fc 5b dc 58 50 18 . P

0030 16 dO 8e 9c 00 00 69 70 20 72 6f 75 74 65 268 31 ......ip route 1
0040 39 32 2e 31 36 36 2e 33 2e 31 2032 35 35 28 32  92,1668.3 .1 255.2
0850 35 35 2e 32 35 35 2e 32 35 35 20 65 31 2f 30 6d  55,255.2 55 el/O.

File: "/tmpfetherXXXXvBAVz0" 3996 KB 00 Packets: 45502 Displayed: 205 Marked: O Dropped: 0 Profile: Default

| @ [Basic Analysis ands... | [E] System Monitor | & [root@iocainost/snor... || Jl (untitied) - Wireshark | i..-i

Figure 22. Telnet commands used to add the static route to LER1
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titled) - Wireshark
Fle Edit View Go Copture fAnalyze Statistics Help

Sdoee EERZSE A+ TF iL|(EBE QGO $EMHK O

Fier: | ~  Expression... Clear Apply
Na. Source Destination Protocl  Info i
126 L0E1358 162.168.0.101 102.168.3.1 TCMP Echa (ping) reguest
LT L0615585 182, .0.101 192.168.3.1 ICHMP Echo (ping) reguest
128 .061828 1%2. .0.101 192.168.3.1 ICHP Echo i reguest
129 062060 192.168.0.101 192,168.3.1 ICHP Echa reguest
130 .062259 1G2. L0101 192.168.3.1 ICMP Echo regquest
HEEEE .062538 192. .0.101 PR R ICHP Echo request
132 062779 192.168.0.101 192.168.3.1 ICHP Echa reguast
Lz .063029 1G2. L0101 192.168.3.1 ICHMP Echo reguest
134 .063249 192, .0.101 192.168.3.1 ICHP Echo request
135 063489 152.168.0.101 192.168.3.1 ICHP Echo reguest
136 -063730 162. .0.101 192.168.3.1 ICHMP Echi regquest
137 192, .0.101 192,168.3.1 ICMP Echo reguest
138 192.168.0.101 192.168.3.1 ICHP Echo reguest
139 192. .0.101 192.168.3.1 ICMP Echo reguest
140 192, .0.101 192.168.3.1 ICMP Echo reguest
141 192.168.0.101 192.168.3.1 ICHP Echa reguest
142 192.168.0.101 192,168,3.1 ICHP Echa reguest
143 192. .0, TENE ICHMP Echo reguast
144 192. L0 il ICMP Echo reguest
145 192. .0, el ICHMP Echo reguest
146 192. .0, S ICMP Echo reguest
147 192.168. 0.1 e ICHP Echi reguest

request

192

151 S067120 192.168.0.101 1582.168.3.1 ICHMP Echo reguest

152 L067662 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest

153 .067746 192.168.0.101 152.168.3.1 ICHP Echo (ping) reguast

154 L 067830 152.168.0.101 1562.168.3.1 ICHMP Echo (ping) reguest

2555 L 068008 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest

156 L 068228 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest

157 - 068459 152.168.0.101 182.168.3.1 ICHMP Echo (ping) reguest

158 . 068718 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest

159 L 068948 192.168.0.101 192.168.3.1 ICHMP Echo (ping) reguest

160 . 069188 192.168.0.101 192.168.3.1 ICHP Echo (ping) reguest

16l .069418 192.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest

162 L 069658 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest

163 . 069888 192.168.0.101 PR R ICMP Echo (ping) reguest

164 L0700129 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest

165 L070365 192.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest

lag .070559 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest

167 -070840 192.168.0.101 1582.168.3.1 ICHMP Echo {ping) reguest

168 L071079 19%2.168.0.101 152.168.3.1 ICMP Echo (ping) reguest

169 04.071145 102.168.10.5 102.168.3.2 TCP telnet » 47511 [SVN, ACK] Seq=0 Ack=l Win=4128 Ler=0 MS5=536

170 SO7IZIS AT IAGRIRID 162.168.10.5 TCP 47511 > telnet [ack] Seq=l Ack=1l win=5840 Len=0

B L071374  192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest

172 L071562 192.168.0.101 152.168.3.1 ICMP Echo (ping) reguest

37B -071835  1592.168.0.101 182.168.3.1 ICHMP Echo (ping) reguest

174 .072052 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest

AT L072272 192.168.0.101 192.168.3.1 ICHMP Echo (ping) reguest

176 104.072523 192.168.0.101 192.168.3.1 ICHP Echo (ping) reguest

177 104.072752 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest -
® Frame 148 (74 bytes on wire, 74 hytes captured) i
0000 00 07 50 0a 1c 60 00 12 3f ae 20 <7 08 00 45 00 ..P.. .. 7. X
0010 00 3c ¢l 23 40 00 40 06 eh 40 cO aB 03 02 cO a8 F
0020 0a 05 b9 07 00 17 b3 Ob 84 a0 00 00 00 00 a0 02
0030 16 do 6b 6 00 00 02 04 05 b4 04 02 08 0a 00 05 S
0040 45 83 00 00 00 Q0 01 03 O3 06 E

File: "C:\DOCUME~1{2PCLIERA L OCALS~1\Tem. | Packets: 372 ed: 3727 Marked: 0 Profile: Default

Figure 23. Snapshot of Wireshark capture window showing the system'’s first
response

To redirect the attack traffic from the two border routers to LER1, the
IDS/automation host then launched two more telnet sessions: one for logging on
the border router LER2 (with IP address 192.168.10.4) and adding a static route
via the router configuration command “ip route 192.168.3.1 255.255.255.255
tunnel 127, and the other for remotely adding a static route to the border router
LERS3 (with IP address 192.168.10.3) via the router configuration command “ip
route 192.168.3.1 255.255.255.255 tunnel 11”. Figures 24 and 25 show the telnet
commands for LER2 and LERS3, respectively, captured by Wireshark when being
sent from the IDS/automation host.
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9 Applications Places System (@) &5 [#@ oot sunfeb 1, 537FM g

(Untitled) - Wireshark

File Edit View Go

@& oo
‘E] Filter: ”talnet

[Ne.. | Time

Capture  Analyze Statistics  Help

X g o A e
[+ | 4 expression. |

B

Source Destination Protocol  Info
1270 17;33:56 192.168.10.4 192.168.3.2 TELMNET  Telnet Data ...
1337 17:33:56 192.168.10. 4 192.168.3.2 TELNET  Telnet Data ...
1375 17:33:56 192.168.3.2 TELNET  Telnet Data ...
1383 17:33:56 192.168.3.2 TELNET  Telnet Data ...
1391 17:33:56 192.168.3.2 TELMET  Telnet Data ...
1397 17:33:56 192.168.3.2 TELMET  Telnet Data ...
1404 17:33:56 192.168.3.2 TELMET  Telnet Data ...
1415 17:33:56 192,168.3.2 TELMET  Telnet Data ...
1429 17:33:56 192.168.3.2 TELMET  Telnet Data ... |
1445 A7 TELNET  Telnet Data I_
TELWET  Telnet Dat |
1483 17:33:56 z (32 L
1490 17:33:56 192.168.3.2 TELMET  Telnet Data
1496 17:33:56 192.168.3.2 TELMNET  Telnet Data
1504 17:33:56 192,168.3.2 TELMET  Telnet Data ...
1514 17:33:56 192.168.3.2 TELMET  Telnet Data
1527 17:33:56 192.168.3.2 TELNET  Telnet Data
1534 17:33:56 192.168.3.2 TELNET  Telnet Data
1541 17:33:56 192.168.3.2 TELNET  Telnet Data
1553 17:33:56 192.168.3.2 TELMET  Telnet Data
1568 17:33:56 192.168.3.2 TELMET  Telnet Data
1575 17:33:56 192.168.3.2 TELMNET  Telnet Data
1582 17:33:56 192,168.3.2 TELMET  Telnet Data ...
1589 17:33:56 192.168.3.2 TELMET  Telnet Data
1596 17:33:56 192.168.3.2 TELNET  Telnet Data
1607 17:33:56 192.168.3.2 TELNET  Telnet Data
16208 17:33:56 192.168.10. 4 192.168.3.2 TELNET  Telnet Data
1rn3 a3.99.cc ana acnan amn1enao TELMCT T an

D Frame 1453 (95 bytes on wire, 9 bytes captured)

[> Ethernet II, Srci Dell_ae:i20:c7? (00:12:3fiaei20:c7), Dst: Cisco Oa:ilci60 (00:07:50:0a: lci 60)
[» Internet Protocol, Src: 192,168.3.2 (192,168.3.2), Dst: 192, 168.10.4 (192.168.10.4)
> B
-

Telnet
Data: ip route 192.16&. 3.1 255.255.255.255 t12\r

0000 00 07 50 Ba lc 60 00 12
Bel8 @0 51 4a da 40 00 48 06
0620 Ba 64 dl e? 00 17 b2 fd
0030 16 dO 8e 9a 00 00 69 70
0840 39 32 2e 31 36 38 2e 33
0050 35 35 2e 32 35 35 2e 32

VF\Ie. "ftmpletherXXXXvBAVz0" 3996 KB 00...

3T ae 20 c7 08 00 45 00
6l 76 c@ a8 03 02 <O aj
Bc al be Oc 55 5b 50 18
20 72 6f 75 74 65 20 31
2e 31 20032 35 35 2e 32
35 35 20 74 31 32 od

VBT Be il

Nl aa av

e

¢ ip route 1
92,1683 .1 255.2
55,2552 55 t12.

Packets: 45502 Displayed: 205 Marked: O Dropped. 0

& [Basic Analysis and 5., |

System Manitar

| B [root@localhostysnor... || [l (Untitied) - Wireshark

 Profile: Default

Figure 24. Telnet commands used to add the redirection route to LER2.
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9 Applications Places System (@) &5 [@  root sunfeb 1, 537eM o)

o o

(Untitled) - Wireshark
File Edit View Go Capture Analyze Statistics Help

S il & O 83X 28

‘.Elfllter: ||tElr|Et

#

|L|| < Expression I

A T8 EE

4 Qlear”g\'j? Applv|

T AN TR

INe.. [Time | Seurce Destinatian Protocol | Info [~
192.168.16.3 192.168.3.2 TELNET  Telnet Data ...
192.168,10.3 192.168.3.2 TELNET  Telnet Data ...
192.168.16.3 192.168.3.2 TELNET  Telnet Data ...
192.168.16.3 192.168.3.2 Telnet Data ...
192.168.10.3 192.168.3.2 Telnet Data ...
168,10 Telnet Data ...

TELNET  Telnet Data ...

.168.10.3 192.168.3.2
.168.10.3 192.168.3.2
.168.18.3 192.168.3.2
.168.18.3 192.168.3.2
.168.18.3 192.168.3.2
+1668.10.3 192,168.3.2
.168.10.3 192.168.3.2
.168.10.3 192.168.3.2
.168.10.3 192.168.3.2
.168.10.3 192.168.3.2
3.2
3.2
=l
3.2
3.2
1.3
3.2
3.2
3.2

.168.18.3 192.168.3.
.168.18.3 192.168.3.
.168.18.3 192.168.3.
+1668.10.3 192.168.3.
.168.10.3 192.168.3.
.168.10.3 192.168.3.
.168.10.3 192.168.3.
.168.10.3 192.168.3.
.168.18.3 192.168.3.

.168.18.3 192.168.3.2
.168.18.3 192.168.3.2
+1668.10.3 192,168.3.2 '7‘
dco o3 101 1ge 2 a9 TELMET {5

D Fr (95 bytes on wire, S5 bytes captured)

‘D Ethernet II, Src: Dell_ae:20:c7 (00:12:3f:ae:20:c7), Dst: Cisco 0a:lc:60 (00:07:50:0a: 1c:60)
;D Internet Protocol, Src: 192, 168.3.2 (192,168.3.2), Dst: 192, 168.10.3 (192.166.10.3)

| Telnet

Data: 1p route 192 163 3.1 255,255, 255,255 t1lhr

0000 00 07 50 Ba lc 60
Bele @8 51 a7 e4 40 00
0620 6a 63 db f8 00 17
0630 16 dO 8e 99 00 00 69
0048 39 32 2e 31 36 38 2e 33
0050 35 35 2e 32 35 35 2e 32

: "tmpfetherXXXXvBAVz0" 3996 KB 00...

3T ae 20 c7 08 00 45 00
04 6d c@ a8 03 02 <O aB
el ec 82 e3 43 ef 50 18
20 72 6f 75 74 65 20 31
2e 31 20032 35 35 2e 32
35 35 20 74 31 31 6d

e eGP
cooodp route 1
92,1683 .1 255.2
55,2552 55 t1l.

Packets: 45502 Displayed: 205 Marked: O Dropped. 0

| 0 [Basic Analysis and 5. |\_ Systemn Monitor

|| B [roct@localhost/snor.. H'i (Untitled) - Wireshark

* Profile: Default

Figure 25. Telnet commands used to add the redirection route to LER3

All the static routes were added within a second. The last reception of a

malicious packet on the target host happened 0.814 seconds after the reception

of the first. Figure 26 shows the last received packet as captured by Wireshark

running on the target host.
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titled) - Wireshark

Fle Edit View Go Copture fAnalyze Statistics Help
Seoes ERRZE Qe TF i|(EE QAQAQAED EEM %
Fier: | ~  Expression... Clear Apply
Na. Time - Source Destination Protocl  Info i
3676 17:34:04.839523 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
3677 17:34:04.839506 162.168.0.101 152.168.3.1 ICHP Echo (ping) reguest
3678 17:34:04.830022 152.168.0.101 152.168.3.1 ICMP Echo (ping) reguest
:04.8399585 1582.168.0.101 152.168.3.1 ICHMP Echo (ping) reguest
:04.840484 152.168.0.101 162.168.3.1 ICHP Echo (ping) reguest
104.840568 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
104.840652 182.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
104.841080 152.168.0.101 192.168.3.1 ICMP Echo (ping) request
104.841715 192. .0, 301 ICMP Echo (ping) reguest
104.841800 182, .0, g ICHMP Echo (ping) reguest
104.841883 192. L0 el ICMP Echo (ping) reguest
:04.841967 192. -0 ik ICMP Echo (ping) reguest
104.842260 192, .0, 30 ICMP Echo (ping) reguest
:04.842805 152, 0 i ICHP Echo (ping) reguest
:04.842973 192, .0 el ICMP Echo (ping) reguest
:04.843064 152, .0, i ICMP Echo (ping) reguest
104.843138 182, .0, L3 ICMP Echo (ping) reguest
:04.843451 192, -0 T ICMP Echo (ping) reguest
104.844076 152, 1L, e ICMP Echo (ping) reguest
104, 844160 182, .0, g ICHMP Echo (ping) reguest
104.844234 152, 0. 23l ICHP Echo (ping) reguest
104.844318 152, .0, T ICMP Echo (ping) reguest
104.844652 182, DL R ICMP Echo (ping) reguest
104.845267 192, .0 it ICHMP Echo (ping) request
104.845340 192, .0, 301 ICMP Echo (ping) reguest
104.845425 182, .0, g ICHMP Echo (ping) reguest
104.845498 192. L0 el ICMP Echo (ping) reguest
:04.845583 192, -0 ik ICMP Echo (ping) reguest
104.845781 192, .0, 30 ICMP Echo (ping) reguest
104.846011 152, 0 i ICHP Echo (ping) reguest
:04.846261 192, .0 el ICMP Echo (ping) reguest
192. .0, i ICMP Echo (ping) reguest
192 a Bk ICMP Echo (ping) reguest
| =
859300 152, e o .10.3 56312 > telne
:04.859321 182.168.3.2 192.168.10.5 TELMET  Telnet Data .
:04.869774 152.168.10.3 152.168.3.2 TELMET  Telnet Data
104.875464 1562.168.10.3 152.168.3.2 TELMET  Telnet Data ...
104.879376 182.168.3.2 192.168.10.3 TCP 56312 > telnet [ACK] Seq=67 Ack=231 win=3840 Len=0
:04.879380 192.168.3.2 182.168.10.3 TELMET  Telnet Data ...
.B879401 192.168.3.2 1%2.168.10.3 TCP 56312 = telnet [FIN, ACK] Seq=72 Ack=231 win=5840 Len=0
L 890011 192.168.10.3 192.168.3.2 telnet » 56312 [ACK] Seq=231 Ack=73 win=4057 Len=0
803953 182.168.10.3 152.168.3.2 Telnet Data ...
15 1 1 5
il 168, 1 563127 &
09.0132585 192.168.3.128 224.0.0.5 Hella Packet
119.013247 162.168.3.128 224.0.0.5 Hello Packet
:21.107963 Dell_ae:20:e0 Broadcast who has 152.168.3.1287 Tell 192.168.3.1
134:21.109633 cCisco_Da:lc:60 pell_ae:20:e0 152.168.3.128 15 at 00:07: %
3727 17:34:21.109642 192.168.3.1 192.168.5.5 gEL-reguast SHMPYZ-5MI:
| ® Frame 3709 (74 hytes on wire, 74 bytes caprured) 2
0000 00 12 3F ae 20 e0 00 07 50 0a 1c &40 08 00 45 00 P.. ..E. I
0010 00 3¢ 11 11 00 00 7d 01 a7 f9 cO a8 00 65 cO a8
0020 03 01 08 00 bc bf 03 00 0L 00 41 42 43 44 45
0030 47 48 49 4a 4b 4a 4c 4d  4e 4F 50 51 52 53 54 L
0040 00 00 00 00 0D 0C 00 00 00 Q0 B
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Figure 26. Snapshot of Wireshark capture window showing the attack’s
termination.

At this point, the DDoS attack against the target host was mitigated. All the
malicious traffic was being redirected to the Windows XP machine simulating the
network’s cleaning center (i.e., the host with IP address 192.68.2.1 in Figure 20).
This behavior can be seen from the following snapshot (Figure 27) captured by
Wireshark running on the Windows XP machine.
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@ (Untitled) - Wireshark
Eile Edit Wiew Go Capture Analyze Statistics Help

BHAE BEEXRE AT L|IEE QAGD| WM % B

Eilter: v Bwpression.. Clear Apply

Mo, . Time Source Destination Protocol | Info
ITI7: 192,168, 2.1 4. 0.0.5 QSFF He [ [0 Packet
Sl Cisco_4T:65:90 COPATR/DTR/PAQR/UDLD CDP Device ID: LERL Port ID: Ethernetl/o
317: Cisco_4f:65:90 Cisco_4f:65:90 LooP Reply
4 17: 192.168.2.128 224.0.0.5 0SPF Hello Packet
57 Cisco_4T:65:90 Cisco_4f:65:90 LooP reply
Gl Cisco_4f:65:30 Broadcast ARP who has 192.168.3.17 Tell 192.168.2.128
Tl pell_ad:bb:96 Cisco_4f:65:90 ARP 192.168.3.1 is at 00:12:3F:ad:bb:96
B 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
917: 192.168.0.101 192.168.3.1 IcMP Echo (ping) request
sl il 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
SR 152.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
e 152.168.0.100 1921680300 ICMP Echo (ping) request
LR 192.168.0.101 192.168.3.1 ICMP eEcho (ping) reguest
14 17: 152.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
1507 152.168.0.101 192.168.3.1 ICMP Echo (ping) request
16 17: 192.168. 0.101 192.168.3.1 ICMP eEcho (ping) reguest
AT 192.168.0.101 192.168.3.1 ICMP eEcho (ping) reguest
BT 152.168.0.101 R AEREI, ICMP Echo (ping) request
19 17: 192.168.0.101 192.168.3.1 ICMP Echo C(ping) reguest
20 17: 192.168.0.101 192.168.3.1 ICMP eEcho (ping) reguest
21 17: 102.168.0.101 192.158.3.1 ICMP Echo (ping) reguest
EEE 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
23 17: 192.168.0.101 192.168.3.1 ICMP Echo (ping) regquest
R 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
2N 192.168.0.101 192.168.3.1 IcMP Echo (ping) request
2ol 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
E 152.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
2BES 152.168.0.100 1921680300 ICMP Echo (ping) request
28 17: 192.168.0.101 192.168.3.1 ICMP eEcho (ping) reguest
A 152.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
3T 152.168.0.101 192.168.3.1 ICMP Echo (ping) request
SRR 192.168. 0.101 192.168.3.1 ICMP eEcho (ping) reguest
D 192.168.0.101 192.168.3.1 ICMP eEcho (ping) reguest
34 17: 152.168.0.101 R AEREI, ICMP Echo (ping) request
Syl 192.168.0.101 192.168.3.1 ICMP Echo C(ping) reguest
36 17: 192.168.0.101 192.168.3.1 ICMP eEcho (ping) reguest
37 17: 102.168.0.101 192.158.3.1 ICMP Echo (ping) reguest
38 17: 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
35 17: 192.168.0.101 192.168.3.1 ICMP Echo (ping) regquest
40 17: 192.168.0.101 192.168.3.1 ICMP Echo (ping) reguest
41 17z 192.168.0.101 192.168.3.1 IcMP Echo (ping) request
Al 192.168. 0.101 192.168.3.1 ICMP Echo (ping) reguest
43 17: 152.168.0.101 1592.168.3.1 ICMP Echo (ping) request |

Frame 1 (78 hytes on wire, 78 bytes captured)
Ethernet II, Src: Clisco 4f:65:90 (00:09:43:4F:65:90), Dst: IPv4mcast_00:00:05 (01:00:5€:00:00:05)
Internet Protocol, Src: 102.168.2.128 (192.168.2.128), Dst: 224.0.0.5 (224.0.0.5)

open Shortest Path First

BEE®

0000 01 00 Se 00 00 05 00 0% 43 4f &5 00 08 00 45 cO
0010 00 40 ee 3 00 00 01 5% 27 39 <0 aB 02 80 e0 00
Q020 00 05 02 01 00 2¢ cO a8 0a 05 00 Q0 00 00 6 CB
0030 00 00 Q0 00 00 00 00 00 00 00 ff ff £f 00 00 0a
0040 02 01 Q0 00 00 28 cO a8 02 30 00 00 00 0O

o

Frofile: Default
@*‘&w B® saEarm

File: "C ADOCUME~14ADMINI~ 1YL OCALS. .. | Packets: 1608497 Digplayed: 1608497 Marked: O Dropped:

[ TStare ECA 7121 wincows Task .

Figure 27. Snapshot from Wireshark running on the cleaning center host.

Tables 8-10 display the forwarding tables of routers LER1, LER2 and
LERS after the attack’s mitigation. The entries with bold letters show the new
static routes remotely added from the IDS/automation host.
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Forwarding Table of LER1 After the Attack’s Mitigation

LER1#show ip route

Codes: C - connected, S - static, | - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - I1S-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-1S inter area, * - candidate default, U - per-user static route
0 - ODR, P - periodic downloaded static route

Gateway of last resort is not set

192.168.10.0/32 is subnetted, 5 subnets
192.168.10.2 [110/21] via 0.0.0.0, 00:33:05, Tunnel19
192.168.10.3 [110/21] via 0.0.0.0, 00:33:05, Tunnel18
192.168.10.1 [110/11] via 192.168.7.1, 00:33:05, Ethernetl/1
192.168.10.4 [110/21] via 0.0.0.0, 00:33:05, Tunnell17
192.168.10.5 is directly connected, Loopback0
192.168.4.0/24 [110/20] via 192.168.7.1, 00:33:05, Ethernetl/1
192.168.5.0/24 [110/20] via 192.168.7.1, 00:33:05, Ethernetl/1
192.168.6.0/24 [110/20] via 192.168.7.1, 00:33:05, Ethernetl/1
192.168.7.0/24 is directly connected, Ethernetl/1
192.168.0.0/30 is subnetted, 1 subnets
192.168.0.100 [110/30] via 0.0.0.0, 00:33:05, Tunnell7
[110/30] via 0.0.0.0, 00:33:05, Tunnell18
192.168.1.0/24 [110/30] via 0.0.0.0, 00:33:05, Tunnell7
192.168.2.0/24 is directly connected, Ethernet1/0
192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.3.1/32 is directly connected, Ethernet1/0
192.168.3.0/24 [110/30] via 0.0.0.0, 00:33:08, Tunnel19

o OO0 O O000OO0OO0OO0

Table 8. LERZ1’'s Forwarding Table after the mitigation of the attack
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Forwarding Table of LER2 After the Attack’s Mitigation

LER2#show ip route

Codes: C - connected, S - static, | - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
0 - ODR, P - periodic downloaded static route

Gateway of last resort is not set

192.168.10.0/32 is subnetted, 5 subnets
192.168.10.2 [110/21] via 0.0.0.0, 00:35:31, Tunnel13
192.168.10.3 [110/21] via 192.168.4.1, 00:35:31, Ethernet0/1
192.168.10.1 [110/11] via 192.168.4.1, 00:35:31, Ethernet0/1
192.168.10.4 is directly connected, Loopback0
192.168.10.5 [110/21] via 0.0.0.0, 00:35:31, Tunnel12
192.168.4.0/24 is directly connected, Ethernet0/1
192.168.5.0/24 [110/20] via 192.168.4.1, 00:35:31, Ethernet0/1
192.168.6.0/24 [110/20] via 192.168.4.1, 00:35:31, Ethernet0/1
192.168.7.0/24 [110/20] via 192.168.4.1, 00:35:31, Ethernet0/1
192.168.0.0/30 is subnetted, 1 subnets
192.168.0.100 is directly connected, Ethernetl/1
192.168.1.0/24 is directly connected, Ethernet0/0
192.168.2.0/24 [110/30] via 0.0.0.0, 00:35:31, Tunnell2
192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.3.1/32 is directly connected, Tunnel12
192.168.3.0/24 [110/30] via 0.0.0.0, 00:35:35, Tunnel13

om OOO O0O0CO0OOOOOOO

Table 9. LERZ2’s Forwarding Table after the mitigation of the attack
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Forwarding Table of LER3 After the Attack’s Mitigation

LER3#show ip route

Codes: C - connected, S - static, | - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - I1S-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
0 - ODR, P - periodic downloaded static route

Gateway of last resort is not set

192.168.10.0/32 is subnetted, 5 subnets
192.168.10.2 [110/21] via 0.0.0.0, 00:32:41, Tunnell0
192.168.10.3 is directly connected, Loopback0
192.168.10.1 [110/11] via 192.168.5.1, 00:32:41, Ethernet0/1
192.168.10.4 [110/21] via 192.168.5.1, 00:32:41, Ethernet0/1
192.168.10.5 [110/21] via 0.0.0.0, 00:32:41, Tunnelll
192.168.4.0/24 [110/20] via 192.168.5.1, 00:32:41, Ethernet0/1
192.168.5.0/24 is directly connected, Ethernet0/1
192.168.6.0/24 [110/20] via 192.168.5.1, 00:32:41, Ethernet0/1
192.168.7.0/24 [110/20] via 192.168.5.1, 00:32:41, Ethernet0/1
192.168.0.0/30 is subnetted, 1 subnets
192.168.0.100 is directly connected, Ethernetl/1
192.168.1.0/24 [110/30] via 192.168.5.1, 00:32:41, Ethernet0/1
192.168.2.0/24 [110/30] via 0.0.0.0, 00:32:41, Tunnelll
192.168.3.0/24 is variably subnetted, 2 subnets, 2 masks
192.168.3.1/32 is directly connected, Tunnel11
192.168.3.0/24 [110/30] via 0.0.0.0, 00:32:41, Tunnell0

oOmw OO0OO 000000000

Table 10. LERS3'’s Forwarding Table after the mitigation of the attack

After the attack’s redirection, LSR1 presented anomalies after about 1
minute. It started to lose connections with the rest of the routers. This unstable
behavior was observed for attack Flows #6 to #11. As the traffic volume went
higher, it took a shorter time for LSR1 to go down. When the attack traffic was
the most intensive, i.e., 16.76 Mbps with attack Flow #11, LSR1’s failure time
was only 45 seconds. Further examinations revealed that the router's CPU load
was more than 80% during those attacks, resulting in unstable behaviors. Figure
28 presents the error log messages from router LSR1 observed on the Windows
XP machine.
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“& fd - HyperTerminal E@

File Edit Wiew Cal Transfer Help
D& =3 D8

LSR1# ~
LSR1#
LSR1#
LSR1#
LSR1#
LSR1#
LSR1#
LSR1#
LSR1#

LSR1#
LSR1#
LSR1#
LSR1#
LSR1#
LSR1#
LSR1#

LSR1#

4d28h: %0SPF-5-ADJCHG: Process 99, Nbr 192.168.10.

DOWN, Meighbor Down: Dead timer expired

4d20h: %0SPF-5-ADJCHG: Process 99, Nbr 192.168.1@.

DOWN, Meighbor Down: Dead timer expired

4d20h: %0SPF-5-ADJCHG: Process 99, Nbr 192.168.10.

DOWN, MNeighbor Down: Dead timer explred

4d20h: %0SPF-5-ADJCHG: Process 99, Nbr 192.168.10.

DOWN, Neighbor Down: Dead timer expired

4d2Bh: %0SPF-5-ADJCHG: Process 99, Nbr 192.168.10.

to FULL, Loading Done

4d20h /OSPF 9-ADJCHG: Process 99, Nbr 192.168.10.
FULL, Loading Done

4d2@h /OSPF 9-ADJCHG: Process 99, Nbr 192.168.10.

to FULL, Loading Done

4d28h: %0SPF-5-ADJCHG: Process 99, Nbr 192.168.10.

to FULL, Loading Done

on Ethernetd/2 from FULL to
on Ethernetd/8 from FULL to
on EthernetB/1 from FULL to
on Ethernetd/3 from FULL to
on Fthernetd/0 from LOADING
on Ethernetd/3 from LOADING
on Ethernetd/1 from LOADING
on Ethernetd/2 from LOADING

oW Nl N W P

%

Connected 0:13:17 Auto detect 9600 8-M-1 MUM
,_'_..-

/4 Start [ B8 Smartwindow  Smarth do... | i untibied - Paint #g Fd - HyperTerminal

Figure 28. Router logs from LSR reporting unstable behaviors

3. Additional Test of Selective Unblocking

After the successful redirection of the attack traffic the part of the attack
traffic coming in from router LER2 was manually stopped. A new telnet session
from the IDS host with LER2 was started. The redirection route from LER2’s
forwarding table was removed through this session via the router configuration
command “no ip route 192.168.3.1 255.255.255.255 tunnell2”. Then, from the
Windows XP machine (with IP address 192.168.1.1) connected to router LER2,
the target host was pinged with the shell command “ping —t 192.168.3.1.” These
ping packets arrived at the target host. In other words, the traffic from LER2 was

successfully returned to the normal path, as illustrated in Figure 29.

83



titled) - Wireshark

Fie Edit Yew Go Copture Andlyee  Statistics Help

Edoee EERZSE A+ TF i |(EBE QGO $EMHK O

Fier: | ~  Expression... Clear Apply
o, Destination Protocol  Info 2
370/ .0.101 182.168.5.1 ICMP Echo (ping) reguest
3708 SOEI0T 162.168.3.1 TP Echo (ping) reguest
3709 L0101 152.168.3.1 ICMP Echo (ping) reguest
3710 L0101 192.168.3.1 ICMP Echo (ping) reguest
3711 L 0.101 162.168.3.1 TCHP Echo (ping) reguest
3712 .0.101 192.168.3.1 ICMP Echo (ping) reguest
3713 .0.101 192.168.3.1 ICHMP Echo (ping) reguest
3714 L0.101 192.168.3.1 ICHP Echo (ping) reguest
3715 .0.101 152.168.3.1 ICHMP Echo (ping) reguest
3716 L0101 192.168.3.1 ICMP Echo (ping) reguest
3717 L0101 192.168.3.1 ICMP Echo (ping) reguest
3718 L0101 192.168.3.1 ICMP Echo (ping) reguest
3719 L0101 152.168.3.1 ICHMP Echo (ping) reguest
3720 .0.101 192,168.3.1 ICHP cho €ping) reguest
3721 SR 152.168.10.3 TCP 48088 > telnet [ack] Seq=66 Ack=203 win=5840 Len=0
3722 .0, 152.168.3.1 ICMP Echio (ping) reguest
3723 .0, 152.168.3.1 ICHP Echo (ping) reguast
3724 S0 192.168.3.1 ICMP Echo (ping) reguest
3725 L0, 152.168.3.1 ICMP Echo (ping) reguest
3726 .0, . e Echo (ping) reguest
3727 0. .3.1 Echo (ping) reguest
.0, e Echo (ping) reguest
.0, TENE Echo (ping) reguest
ol S Echo (ping) reguest
.0, el Echo (ping) reguest
.0, S Echo reguest
.0, Sk Echo reguest
[} 3.1

Echio i reguest
Telnet pata ...

Telnet Data ...

Telnet Data ...

Telnet pata ...

40088 > telnet [ACK] Seq=67 Ack=231 win=3840 Len=0
Telnet Data ...

45088 > telnet [FIN, ACK] Seq=72 Ack=231 wWin=5840 Len=0
te]‘net > 48088 [ACK] seq=231 Acl win=4057 Len=0

ta

=
.168.3.128 .0.0. Hello Packet
.168.3.128 0.0, QSPF Hello Packet
3749 03:24:31 192.168.3.128 L0.0. OSPF Hello Packet

3750 03:24:33 192.168.1.1 152.168.3.1 ICMP Echo (ping) reguest
FZSL 0324139 107 T68. 1.1 132.168.3.1 ICMP Echo Cping) reguest
3753 03:24:44 102.168.1.1 152.168.3.1 TCHP Echo (ping) request
3754 03:24:46 Cisco_0a:lc:60 CDP/VTR/DTR/PAGP/UDLD CDR pevice ID: LER4 Port ID: Ethernet(/0
3755 03 50 192.168.1.1 152.168.3.1 ICHP Echo (ping) reguest
3756 03 51 162.168.3.128 224.0.0.5 OSPF Hello Packet
3757 03:24:55 192.168.1.1 192.168.3.1 ICMP Echo (ping) reguest
3758 03:25:01 192.168.1.1 192.168.3.1 LCMP Echo (ping) reguest
3759 03:25:01 162.168.3.128 224.0.0.5 OSPF Hello Packet
T Erama 1 F7R batac onowina 72 butac cantunadd &

0000 01 00 5e 00 00 05 00 07 50 0a 1c G40 0% 00 45 <0
0010 00 40 3b ¢z 00 00 0L 59 d8 h5 c0 a8 03 80 ed 00
0020 00 05 02 0L 00 2c <0 a8 Qa 02 00 00 00 00 ed cb
0030 00 00 00 00 00 00 00 00 00 00 FF £f £f 00 00 Oa
0040 02 01 00 00 00 28 cO0 a8 03 B0 00 00 00 QO

Figure 29. Snapshot from target's Wireshark after the selective unblocking on
router LER2

C. PERFORMANCE METRICS

The main performance metric for this research is the overall response time
of the network during an attack — which is referred to simply as “mitigation time”
in the rest of this thesis. It is defined to be the time interval from the reception of
the first malicious packet at the target host to the reception of the last malicious

packet at the same host.

The IDS’s first response time was also measured as the time interval
between the reception of the first malicious packet at the target host and the

transmission of the first redirection route (for LER1) from the IDS host.
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To derive both performance metrics the Wireshark packet captures from
the target host were used. The target and IDS hosts were connected to the same
hub, hence, the Wireshark application running on the target host also captured
packets from the IDS host. Wireshark gives time accuracy of 0.00001 second

and this granularity was adequate for the needs of this research.

The last performance metric collected was the router CPU load. For this
purpose the router configuration command “show processes cpu history" was
used. This command displayed the router's CPU load information for the last
sixty seconds, one hour, and seventy two hours. Figure 30 presents an example

output of this command.

“& j - HyperTerminal
File Edit Wiew <Cal Transfer Help

User HAccess Verification
2299 32
Password: 111925222
Password: 31111101
595555066666050555505522222
668833800000888889999999999
100
90
80
10
60
o0
40
30
20
10
a....5....1. 0202000300030 k50l
)] 5 0 ) 0 5 )] ) 0 5
CPU% per second {last 60 seconds)
25 2 2 52 35 25145 4 445 23
_— 11 1113060 0 9 3973288 3926252 8 35143 21 903
90
—MWore—— _
Connected 6123141 Auko detect Q600 §-N-1 R AP UM

f: start “g 1- HyperTerminal I B Smarttindow ; smartindaw - vorda,. | A2 CriDacuments and Se...

Figure 30. LER1 CPU load for attack flow 8.36 Mbps
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D. EXPERIMENTAL RESULTS AND ANALYSIS

The results of the research are presented in this section. As noted in
Chapter lll, eleven different flows in the packet generator were specified. The first
five flows were to simulate low-to-medium attack traffic for the specific routers
used in the test-bed networks. The next five flows were to simulate high attack
traffic. In order to achieve more accurate results, each experiment was run ten
times, and then the average of the mitigation times and IDS’s first response times
were calculated. Figures 31 and 32 show the performance of the test-bed

network under the different attack flows.
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Figure 31. Mean mitigation time for different attack flows
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The numeric results are presented in Table 11.

13.38

15.08

Mean time for IDS’s first response for different attack flows

16.76

Flow # Attack traffic intensity | Mean Mitigation Time Mean IDS First
(Mbps) (sec) Response Time (sec)
1 1.84 0.73709 0.12718
2 3.34 0.71162 0.06746
3 5.02 0.73147 0.04893
4 6.7 0.77802 0.03918
5 8.36 0.80531 0.03431
6 8.53 0.81185 0.03332
7 10.04 0.96776 0.02943
8 11.72 1.05004 0.02683
9 13.38 1.50339 0.02498
10 15.08 1.65895 0.02333
11 16.76 13.18943* 0.02243
Table 11. Summary of timing data for different attack flows.
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As can be extracted from these results, the system responds in a very
short period of time under the first ten attack flows. The mitigation of DDoS
attacks was achieved in less than 1 second for the first seven flows and less than
2 seconds for Flows # 8, 9 and 10. The IDS’s first response time was decreased
as the attack intensity was increased. This behavior was expected, since the
Snort®’s rule used is fired after the reception of 100 ICMP echo request packets
within 10 seconds, as referred to in Chapter Ill. Hence, the higher the attack flow

, the faster the condition of this rule was met.

As already noted, for Flow #6 and higher, the CPU load of the core router
LSR1 quickly exceeded 80%. Under this condition, LSR1 had an unstable
behavior: first it output the error message for each of its interfaces “from FULL to
DOWN, Neighbor Down: Dead timer expired,” and very soon it wrote out another
error message “from LOADING to FULL, Loading Done.” The messages were
due to the Open Shortest Path First (OSPF) protocol. The OSPF neighbors
exchange “hello” packets at multicast address 224.0.0.5. If these packets are not
delivered because of any Layer 2 issue, OSPF neighbors flap, resulting in the
first error message [28]. In this case, some OSPF “hello” packets were dropped
because of traffic congestion. The second message occurred because the router
finally received a new “hello” packet from its neighbors and it loaded the
interfaces again. Those problems had “gap” effects on the received traffic by the

cleaning center as shown in Figure 33.
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Figure 33. Traffic gaps at cleaning center host created by LSR1 failure due to
heavy traffic

The network exhibited extensive anomalies under Flow #11. The
anomalies had a large impact on the mitigation time. Highly varying values, from
4.6 seconds to 22 seconds, even though the measured IDS first response times
were constant and very close to 0.022 seconds were obtained. In one case the
system did not respond, even after 5 minutes. This problem was caused by high
CPU load on router LSR1. (See Figure 37.) This high CPU load caused LSR1 to
drop or delay the forwarding of the telnet packets used for mitigation. This router
also became a traffic bottleneck even after redirection, because the two attack
flows from routers LER2 and LER3 had to be consolidated into one MPLS-TE
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tunnel at LSR1 first, on their way to LER1. Above Flow #6, consolidation was
unattainable since the total attack flow rate was greater than the configured
tunnel capacity of 10 Mbps.

Figures 34 to 37 show the CPU load measured on each network’s router,
except router LER4. The LER4 router (target’s LER) had very low traffic, since

mitigation was achieved in very short times.
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Figure 34. CPU load of LER1 (cleaning center)
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Figure 35. CPU load of LER2 (border router)
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Figure 36. CPU load of LER3 (border router)
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Figure 37. CPU load of LSR1 (core router)

The LER2 and LER3 routers had very similar CPU loads, as was
expected, during all the tested attacks. They reached 80% CPU load only during
the attacks with the maximum attack flow. Router LER1 never exceeded 65%

CPU load. This can be explained by the already discussed bottleneck on LSR1.

E. COMPARISON BETWEEN MPLS-TE AND BGP BHR

Puri’s study appears to be more related to this thesis research. His test-
bed had almost the same topology. Furthermore, the IDS/automation system was
almost identical. Unfortunately, Puri did not provide details about his testing
methodology. He only alluded to the mitigation time in one of his conclusions, as

follows:
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...once an attack was detected the system close to 20 seconds to
mitigate the D/DoS attack. This time includes the telnet/SSH
session initiated from the IDS to the trigger router, advertisement of
the null route to all the border routers, and dropping all the
malicious packets at the AS boundary.

Because of this lack of data, an in-depth quantitative performance
comparison between Puri's thesis and this research is not possible. Even if it is
assumed that the 20-second time was obtained under an attack with the
maximum bit rate of 16.76 Mbps, that performance is significantly worse than the

time achieved by this current network for the same attack flow.

Stamatelatos reported the average response times by a similar network
setup albeit using BGP BHR, for a comparable set of attack flows [2]. His
definition of response time, however, was based on the events of BGP route

advertisements as he stated in his thesis [2]:

The main performance metric for this research was the response
time of the routers. And the most accurate way to measure those
values was to capture the trigger router’s initial routing-
advertisement update and the border routers’ subsequent routing
update messages.

This definition does not take into account the time that it takes to detect
the attack and the time it takes to add a new static route to the trigger router. This
was expected because no IDS was used and the static route was added to the
trigger router manually in those experiments. Thus, the response times reported
in Stamatelatos’s thesis [2] might have underestimated the actual response
times. In contrast, this research’s definition of mitigation time includes all

necessary steps from the attack’s detection to its mitigation.

Figure 38 shows the average mitigation times from the current
experiments together with the response times reported in Figure 36 of
Stamatelatos’s thesis [2]. Even discounting the possible underestimation factor,
this current network responded to the attacks slightly faster. Another factor is

worth mentioning. The response times reported in Figure 36 of Stamatelatos’s
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thesis were obtained using a Juniper router as the core router. That router has a
much higher CPU and link capacity than the Cisco router used for LSR1.
Therefore, the Juniper router most likely did not suffer from the same anomalies

that delayed mitigation by this research’s network.
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Figure 38. Comparison of MPLS-TE and BGP BHR techniques

The slightly better performance of the MPLS-TE technique may be due to
use of the “priority list” command to give telnet sessions priority over other traffic.
In contrast, BGP routing messages did not receive such preferential treatment in
Stamatelatos’ BGP BHR work.

The most significant advantage of the current technique compared to BGP
BHR is that it does not indiscriminately drop packets destined to the target host.

The traffic could be redirected to the cleaning center where it could be analyzed,
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sanitized, and then sent to the target host. The forwarding of sanitized traffic to
the target host can be easily accomplished with a slight modification to this
network: adding a second LER for the cleaning center and configuring a
dedicated tunnel from the new LER to the target host. With this approach no

legal packet “will be sent to the trash,” even during an attack.
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V CONCLUSIONS

A.CONCLUS IONS

Using a real test-bed network, this study evaluated the performance of the
proposed MPLS-TE technique for mitigating DDoS attacks. In Chapter IV, a real-
time fully automated attack detection and mitigation process was described. The
network was tested under stressful situations in which the router CPU capacity
and the link capacity became bottlenecks. In the same chapter the timing results
were discussed and compared to the results from two prior studies of the BGP

BHR techniques. The above actions led us to the following conclusions.

The MPLS-TE technique provides a relatively simple implementation of
the sinkhole routing method. It does not require special interface cards that may
add significant processing overhead to the involved routers. The method allowed
successful protection of the target host and kept it reachable for legitimate traffic
within the AS. The overall system response time can be within seconds;
comparable to the best results achieved with BGP BHR. Unlike BGP BHR
techniques, the MPLS-TE technique avoids blind discarding of all traffic destined
to the target host. Furthermore, it provides the capability to analyze the traffic

(malicious or not) for forensics purposes.

The main disadvantage of the MPLS-TE technique is that the
infrastructure must be upgraded to support MPLS. This means that routers with

older versions of software need to be replaced.

Two other points should be noted, First, the MPLS-TE proposals in the
literature use BGP protocol to advertise the redirection routes. In this study telnet
was used for this purpose in order to simplify the router configurations and make
the system more controllable. This also made it relatively easy to implement
selective unblocking on any border router. As presented in Chapter IV, the telnet

technique was very efficient and achieved mitigation times under two seconds

97



even under intense attack traffic. However telnet appears to have security issues.
Those issues can be addressed by using Secure Shell protocol (SSH) instead of

telnet, with only a small additional processing overhead.

Second, by not discarding packets at border routers, the MPLS-TE
technique may keep the target’'s AS under stress even after the redirection of the
attack traffic. For example, in the current test-bed, when the traffic flow rate went
above 8.5 Mbps, the CPU load of the core router exceeded the safe threshold of
80%, and in a short amount of time (less than a minute) the connections between
this and other routers became unstable. Therefore, it is important for a network to
have enough resources to deal with a large amount of malicious traffic when a

sinkhole method is employed.
B. FUTURE WORK

Research in the following two areas will provide a more complete

evaluation of the utility of MPLS-TE in mitigation of DDoS attacks.

1. The current study did not implement many important functions of the
cleaning center. The cleaning center should perform traffic analysis and cleaning,
forensics and archiving, and finally selective forwarding of “clean” packets to the
target host. The employment of a suitable cleaning center with the above
capabilities would provide a complete, integrated, anti-DDoS solution with which

to assess the full mitigative benefits of the MPLS-TE technique.

2. The current study used only one type of low to mid-range Cisco routers.
Real-world large networks often consist of many types of routers with different
capabilities and from different vendors. Thus, another potential area of future
study could involve evaluating the degree of interoperability of MPLS-TE in such

heterogeneous environments.
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APPENDIX A. ROUTERS’ CONFIGURATION FILES

Appendix A presents the configuration files for the rest test-bed’s network
routers LER1, LER3 and LERA4.

Configuration of LER1 - Cleaning Center’s Router

Current configuration : 2289 bytes
!

version 12.2

service timestamps debug uptime
service timestamps log uptime

no service password-encryption

!

hostname LER1

!

!

ip subnet-zero

!

!

!

ip cef

mpls traffic-eng tunnels

call rsvp-sync

interface LoopbackO
ip address 192.168.10.5 255.255.255.255
|

interface Tunnell7

ip unnumbered LoopbackO

tunnel destination 192.168.10.4

tunnel mode mpils traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 4800
tunnel mpls traffic-eng path-option 1 explicit name def-LER2
|

interface Tunnell8

ip unnumbered Loopback0

tunnel destination 192.168.10.3

tunnel mode mpils traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 4800
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tunnel mpls traffic-eng path-option 1 explicit name def-LER3
|

interface Tunnell19

ip unnumbered LoopbackO

tunnel destination 192.168.10.2

tunnel mode mpls traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 100
tunnel mpls traffic-eng path-option 1 explicit name def-LER4
|

interface FastEthernet0/0

no ip address

shutdown

duplex auto

speed auto

|

interface Ethernet1/0

ip address 192.168.2.128 255.255.255.0
half-duplex

|

interface Ethernet1/1

ip address 192.168.7.128 255.255.255.0
half-duplex

mpls traffic-eng tunnels
tag-switching ip

priority-group 1

ip rsvp bandwidth 10000 10000
|

interface Ethernet1/2

no ip address

shutdown

half-duplex

|

interface Ethernet1/3
no ip address
shutdown
half-duplex

|

router ospf 99

router-id 192.168.10.5
log-adjacency-changes

network 192.168.0.0 0.0.255.255 area 0
mpls traffic-eng router-id LoopbackO
mpls traffic-eng area 0

|

ip classless

no ip http server

|

ip explicit-path name def-LER4 enable
next-address 192.168.7.1
next-address 192.168.6.128

!

ip explicit-path name def-LER2 enable
next-address 192.168.7.1
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next-address 192.168.4.128

!

ip explicit-path name def-LER3 enable
next-address 192.168.7.1
next-address 192.168.5.128

!

priority-list 1 protocol ip high tcp telnet
priority-list 1 protocol ip low

!

I
dial-peer cor custom
!

!

!

!

line con 0

password vordos
login

line aux 0

linevty 0 4
password vordos
login

!

end

Configuration of LER3 — Right Border Router

Current configuration : 1916 bytes
!

version 12.2

service timestamps debug uptime
service timestamps log uptime

no service password-encryption

!

hostname LER3

!

!

ip subnet-zero

!

!

!

ip cef

ip audit notify log

ip audit po max-events 100

mpls traffic-eng tunnels

|

call rsvp-sync
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interface LoopbackO
ip address 192.168.10.3 255.255.255.255
|

interface Tunnell10

ip unnumbered LoopbackO

tunnel destination 192.168.10.2

tunnel mode mpls traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 4800
tunnel mpls traffic-eng path-option 1 explicit name def-LER4
|

interface Tunnelll

ip unnumbered LoopbackO

tunnel destination 192.168.10.5

tunnel mode mpils traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 4800
tunnel mpls traffic-eng path-option 1 explicit name def-LER1
|

interface Ethernet0/0

ip address 192.168.8.128 255.255.255.0
half-duplex

|

interface Ethernet0/1
description Connection to LSR1
ip address 192.168.5.128 255.255.255.0
half-duplex

mpls traffic-eng tunnels
tag-switching ip

priority-group 1

ip rsvp bandwidth 10000 10000
|

interface Ethernet1/0

no ip address

shutdown

half-duplex

|

interface Ethernetl/1

ip address 192.168.0.102 255.255.255.252
half-duplex

|

router ospf 99

router-id 192.168.10.3
log-adjacency-changes

network 192.168.0.0 0.0.255.255 area 0
mpls traffic-eng router-id LoopbackO
mpls traffic-eng area 0

|

ip classless

no ip http server

|

ip explicit-path name def-LER4 enable
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next-address 192.168.5.1
next-address 192.168.6.128

I

ip explicit-path name def-LER1 enable
next-address 192.168.5.1
next-address 192.168.7.128

!

priority-list 1 protocol ip high tcp telnet
priority-list 1 protocol ip low

I

|
dial-peer cor custom

line con 0
password vordos
line aux 0

linevty 04
password vordos
login

I

end

Configuration of LER4 — Target Network’s Router

Current configuration : 2339 bytes
!

version 12.2

service timestamps debug uptime
service timestamps log uptime

no service password-encryption

!

hostname LER4

!

!

ip subnet-zero

!

!

I

ip cef

mpls traffic-eng tunnels

call rsvp-sync

interface LoopbackO
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ip address 192.168.10.2 255.255.255.255
|

interface Tunnell4

ip unnumbered LoopbackO

tunnel destination 192.168.10.5

tunnel mode mpls traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 100
tunnel mpls traffic-eng path-option 1 explicit name def-LER1
|

interface Tunnell5

ip unnumbered Loopback0

tunnel destination 192.168.10.4

tunnel mode mpls traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 4800
tunnel mpls traffic-eng path-option 1 explicit name def-LER2
|

interface Tunnel16

ip unnumbered Loopback0

tunnel destination 192.168.10.3

tunnel mode mpls traffic-eng

tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 7 7

tunnel mpls traffic-eng bandwidth 4800
tunnel mpls traffic-eng path-option 1 explicit name def-LER3
|

interface Ethernet0/0

ip address 192.168.3.128 255.255.255.0
half-duplex

|

interface Ethernet0/1
no ip address
shutdown
half-duplex

|

interface Ethernet0/2

description Connection to LSR1

ip address 192.168.6.128 255.255.255.0
half-duplex

mpls traffic-eng tunnels

tag-switching ip

priority-group 1

ip rsvp bandwidth 10000 10000

|

interface Ethernet0/3
no ip address
shutdown
half-duplex

|

interface FastEthernet1/0
no ip address
shutdown
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duplex auto

speed auto

|

router ospf 99

router-id 192.168.10.2
log-adjacency-changes

network 192.168.0.0 0.0.255.255 area 0
mpls traffic-eng router-id LoopbackO
mpls traffic-eng area O

|

ip classless

no ip http server

|

ip explicit-path name def-LER1 enable
next-address 192.168.6.1
next-address 192.168.7.128

!

ip explicit-path name def-LER2 enable
next-address 192.168.6.1
next-address 192.168.4.128

I

ip explicit-path name def-LER3 enable
next-address 192.168.6.1
next-address 192.168.5.128

!

priority-list 1 protocol ip high tcp telnet
priority-list 1 protocol ip low

!

!

dial-peer cor custom

!

!

I

]

gatekeeper

shutdown

!

!

line con 0

password vordos

line aux 0

linevty 0 4

password vordos

login

I

end
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APPENDIX B. SSP_CISCO_NULLROUTE.C FILE

Appendix B presents the modified source code for the Cisco null route

plug-in. The original code was developed by Mr. Frank Knobbe [29].

N
b

$1d: ssp_cisco _nullroute.c,v 2.3 2008/04/26 19:50:26 fknobbe Exp $

Copyright (c) 2005-2008 Frank Knobbe <frank@knobbe.us>
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in

O ok X o X b X o X ok X %

~+
D

*

documentation and/or other materials provided with the
distribution.

*

* THIS SOFTWARE 1S PROVIDED BY THE AUTHOR AND CONTRIBUTORS ~~AS 1S"*
AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF

*

SUCH DAMAGE.
Acknowledgements:

Brent Erickson and Sergio Salazar for the idea and sample commands.

oX ok % % X %

ssp_cisco_nullroute.c
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Purpose:

*
*
*
* This SnortSam plugin telnet"s into one or more Cisco routers and
issues

* a route command to effectively "null-route" the intruding IP
address.

* SnortSam will remove the added routes when the blocks expire.
*

*

*/
#ifndef __SSP_CISCO_NULLROUTE_C__
#define ~_SSP_CISCO_NULLROUTE_C__

#include '"'snortsam.h"
#include "ssp_cisco _nullroute.h”

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#ifdef WIN32

#include <winsock.h>
#else

#include <netinet/in.h>
#include <arpa/Zinet.h>
#endi

/* This routine parses the cisconullroute statements in the config
file.
* 1t builds a list of routers)
*
/
void CiscoNullRouteParse(char *val,char *Ffile,unsigned long
line,DATALIST *plugindatalist)
{ CISCONULLROUTEDATA *ciscop;
char *p2,msg[STRBUFSIZE+2],*p3;
struct in_addr routerip;

#ifdef FWSAMDEBUG
printf('Debug: [cisconullroute] Plugin Parsing...\n");
#endif

if(*val)
{ p2=val;
while(*p2 && !myisspace(*p2))
p2++;
itT(*p2)
*p2++ =0;
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routerip.s_addr=getip(val);
if(routerip.s_addr) /* 1f we have a valid
IP address */

{
ciscop=safemal loc(sizeof(CISCONULLROUTEDATA), "ciscoparse", " ''ciscop
"); /* create new router */
plugindatalist->data=ciscop;
ciscop->ip.s_addr=routerip.s_addr;
ciscop->routersocket=0;
ciscop->loggedin=FALSE;
ciscop->username[0]=ciscop->enablepw[0]=ciscop-
>userlogin=0;
ciscop->telnetpw=ciscop->username;

1T(*p2)
{ val=p2;
while(*val && myisspace(*val)) /* now
parse the remaining text */
val++;
if(val)
{ p2=val;
while(*p2 && Imyisspace(*p2))
p2++;
1f(*p2)
*p2++ =0;
safecopy(ciscop->username,val); />

save telnet password */

p3=strchr(ciscop->username, “/"); /*
Check i1f a username is given */
1T(p3)
{ *p3++ :0;
ciscop->telnetpw=p3;
ciscop->userlogin=TRUE;

}
1T(*p2)
/* if we have a second password */
{ while(*p2 && myisspace(*p2))

p2++;
safecopy(ciscop->enablepw,p2);/* it
would be the enable password */

}
else
safecopy(ciscop->enablepw,ciscop-
>telnetpw); /* if only one password was found, use it for both */

iT(lciscop->telnetpw[0])
{ snprintf(msg,sizeof(msg)-1,"Error: [%s: %lu]
Cisco Router defined without passwords!',file,line);
logmessage(1,msg, " 'cisconullroute™,0);
free(ciscop);
plugindatal ist->data=NULL;
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#ifdef FWSAMDEBUG
else
printf("'Debug: [cisconullroute] Adding Cisco
Router: 1P \"%s\", PW \"%s\", EN \"%s\'"\n",inettoa(ciscop-
>ip.s_addr),ciscop->telnetpw,ciscop->enablepw);
#endif
}

else

{ snprintf(msg,sizeof(msg)-1,"Error: [%s: %lIu] Invalid

CiscoNullRoute parameter "%s® ignored.”,file,line,val);
logmessage(l,msg, ‘cisconullroute™,0);

}
}
else
{ snprintf(msg,sizeof(msg)-1,"Error: [%s: %lu] Empty

CiscoNulIRoute parameter.”,File,line);
logmessage(1l,msg, ‘cisconullroute™,0);
}

/* This routine initiates the block. It walks the list of routers
* telnet"s in, and issues the route command.
*/
void CiscoNulIRouteBlock(BLOCKINFO *bd,void *data,unsigned long qp)
{ CISCONULLROUTEDATA *ciscop;
struct sockaddr_in thissocketaddr,routersocketaddr;
unsigned long flag;
char cnrmsg[STRBUFSIZE+1],cnrat[STRBUFSIZE+1];
#ifdef FWSAMDEBUG
#ifdef WIN32
unsigned long threadid=GetCurrentThreadld();
#else
pthread_t threadid=pthread_self();
#endif
#endif

if(ldata)
return;
ciscop=(CISCONULLROUTEDATA *)data;

#ifdef FWSAMDEBUG

printf("'Debug: [cisconullroute][%Ix] Plugin
Blocking...\n",(unsigned long)threadid);
#endif

snprintf(cnrat,sizeof(cnrat)-1,"router at %s", inettoa(ciscop-
>ip.s_addr));

iT(lciscop->routersocket)

{ routersocketaddr.sin_port=htons(23); /* telnet */
routersocketaddr.sin_addr.s_addr=ciscop->ip.s_addr;
routersocketaddr.sin_family=AF_INET;

thissocketaddr.sin_port=htons(0); /* get a dynamic port
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thissocketaddr.sin_addr.s_addr=0;
thissocketaddr.sin_family=AF_INET;

/* create socket */
ciscop-
>routersocket=socket(PF_INET,SOCK_STREAM, IPPROTO_TCP);
iT(ciscop->routersocket==INVALID_SOCKET)
{ snprintf(cnrmsg,sizeof(cnrmsg)-1," Error:
[cisconullroute] Couldn®t create socket!™);
logmessage(1,cnrmsg, "‘cisconul lroute',ciscop-
>ip.s_addr);
ciscop->routersocket=0;
return;
}
/* bind it */
if(bind(ciscop->routersocket, (struct sockaddr
*)&(thissocketaddr),sizeof(struct sockaddr)))
{ snprintf(cnrmsg,sizeof(cnrmsg)-1," Error:
[cisconullroute] Couldn®t bind socket!');
logmessage(l,cnrmsg, ‘ciscocnul lroute',ciscop-
>ip.s_addr);
ciscop->routersocket=0;
return;
}
/* and connect to router */
iT(connect(ciscop->routersocket, (struct sockaddr
*)&routersocketaddr,sizeof(struct sockaddr)))
{ snprintf(cnrmsg,sizeof(cnrmsg)-1," Error:
[cisconullroute] Could not connect to %s! Will try later.",cnrat);
logmessage(l,cnrmsg, "‘cisconul lroute",ciscop-
>ip.s_addr);
closesocket(ciscop->routersocket);
ciscop->routersocket=0;

}
}
iT(ciscop->routersocket)
{ do

{

#ifdef FWSAMDEBUG

printf("'Debug: [cisconullroute][%Ix] Connected to
%s-\n",(unsigned long)threadid,cnrat);
#endif

flag=-1;

ioctlsocket(ciscop->routersocket,FIONBIO,&Flag);

/* set non blocking */
Tlag=FALSE;

if(Iciscop->loggedin)
{ if(ciscop->userlogin)
iT(!sendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute™,ciscop-
>ip,"","username","waiting for user logon prompt from ',cnrat))
{ Tlag=TRUE;
continue;
}
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snprintf(cnrmsg,sizeof(cnrmsg)-
1,"%s\r",ciscop->username); /* Send username password */

if(!sendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute',ciscop->ip,cnrmsg, ''‘pass',"at
password prompt from ',cnrat))
{ Tlag=TRUE;
continue;
}

snprintf(cnrmsg, sizeof(cnrmsg)-
1,"%s\r",ciscop->telnetpw); /* Send telnet password */

else
if(Isendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute™,ciscop->ip,"", "pass", "waiting
for logon prompt from ",cnrat))
{ Tlag=TRUE;
continue;

snprintf(cnrmsg,sizeof(cnrmsg)-
1,"%s\r",ciscop->telnetpw); /* Send telnet password */

if(!sendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute',ciscop->ip,cnrmsg,'>","at
logon prompt of ",cnrat))
{ Tlag=TRUE;
continue;
}

/* Send enable */

//Changed by the author to the minimum accepted
command ('en" instead of "enable') by the cisco routers to reduce
session”®s duration.

if(!sendreceive(ciscop-
>routersocket,CNRNETWAIT,"cisconul lroute',ciscop->ip, 'en\r', "pass’,"at
enable command of " ,cnrat))

{ flag=TRUE;

continue;
}

/* Send enable password */

snprintf(cnrmsg,sizeof(cnrmsg)-1,"%s\r",ciscop-
>enablepw) ;

if(Isendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute',ciscop->ip,cnrmsg, ""#","at
enable prompt of ",cnrat))

{ Fflag=TRUE;

continue;
}

/* Send config */
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//Changed by the author to the minimum accepted
command (‘conf t™ instead of *"configuration terminal') by the cisco
routers to reduce session®"s duration.

if(!sendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute',ciscop->ip, ' 'conf t\r", "#", "at
config command of ",cnrat))

{ Tlag=TRUE;

continue;
}

ciscop->loggedin=TRUE;
}

/* send route command */

// The below 3 "if" commands added by the author in
order to chose the correct static route to be added for the
coresponding router.

iT(strcmp(inettoa(ciscop->ip.s_addr),
"192.168.10.5") == 0) {
// Changed by the author in order to fit to add
to LER1 the correct static route.
snprintf(cnrmsg,sizeof(cnrmsg)-1,"%sip route %s
255.255.255.255 e1/0\r",bd->block?"*":"'no ', inettoa(bd->blockip));

}

if(strcmp(inettoa(ciscop->ip.s_addr), "192.168.10.3")

== 0){
// Changed by the author in order to fit to add
to LER3 the correct static route.
snprintf(cnrmsg,sizeof(cnrmsg)-1,"%sip route %s
255.255.255.255 t11\r",bd->block?'":""no "', inettoa(bd->blockip));

}

if(strcmp(inettoa(ciscop—>ip-s_addr), ''192.168.10.4")

== 0){
// Changed by the author in order to fit to add
to LER1 the correct static route
snprintf(cnrmsg, sizeof(cnrmsg)-1,"%sip route %s
255.255.255.255 t12\r",bd->block?'" :""no "', inettoa(bd->blockip));
}
if(!sendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute™,ciscop->ip,cnrmsg, "#'","at
route command of ',cnrat))

{ Tlag=TRUE;
continue;

}

if(!moreinqueue(gp))

{ /* End input */

if(Isendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute™,ciscop->ip, ' \032","#","at
CTRL-Z of ",cnrat))
{ Tlag=TRUE;
continue;
}
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//* Save config */

// lgnored by the author in order to reduse
each session"s duration. We don®"t need permanently store the static
routes.

//iT(1sendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute™ ,ciscop->ip, 'write
mem\r',"#","at write mem command of ",cnrat))

//7{ Tlag=TRUE;

// continue;

/7%

/* and we"re outta here... */
sendreceive(ciscop-
>routersocket,CNRNETWAIT, "cisconul lroute',ciscop->ip, " 'quit\r","","at

quit command of " ,cnrat);

Tlag=TRUE;

//Changed by the author to FALSE in order to
avoid continously keeping telnet session open.

ciscop->loggedin = FALSE;

}
Jwhile(FALSE);
if(flag)
{ closesocket(ciscop->routersocket);

ciscop->routersocket=0;
ciscop->routersocket=FALSE;

}

#endif /* __ SSP_CISCO_NULLROUTE_C__ */
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